|

AD-A150 582 EFFECTS OF RSSUMING INDEPENDENT COMPONENT FRILURE TINES 11
IF -THEY ACTUALLY. . (U> OHIO STATE UNIY RESEAR
FOUNDATION COLUMBUS M L MOESCHBERGER ET AL. 26 OCT 94
UNCLASSIFIED AFOSR-TR-85-9001 AFOSR-82-0387




A SENAN A o e ¥ -
MEACA A - et v v s

Jdaa

EEEFEEFFFTTH

e

1.4
vm————
———

NATIONAL BUREAU OF STANDARDS-1963-A

____

MICROCOPY RESOLUTION TEST CHART

22
e
22 i

R

-
Pre

AR
PR Y =

1.

-

-~

v
o~

Lrates




O IR N N, S 'S

B AFOSR-TR- 85-000 1 4 R
- L
o]
- 0 RF Project 763265/714837
Annual Report
o
- [y
F
- : é EFFECTS OF ASSUMING INDEPENDENT COMPONENT FAILURE TIMES,
E < IF THEY ARE ACTUALLY DEPENDENT, IN A SERIES SYSTEM

Melvin L. Moeschberger
- Department of Preventive Medicine )

and

John P. Klein .
Department of Statistics

) For the Period e
September 1, 1983 -~ September 30, 1984 . .ji:.j
AIR FORCE OFFICE OF SCIENTIFIC RESEARCH -2'-;::2
Bolling Air Force Base, D.C. 20332 o
Grant No. AFOSR 82-0307 Ry
_ o“ .'-;. h‘:; .,-.- : . A _..:
8 - k., s
) EL:
- | _FEB26 1985 P
w—— P T
()
- :___:_: October 26, 1984 A
=

The Ohio State University

Research Foundation
1314 Kinnear Road
Columbus, Ohio 43212

[ This document hag been g

fo: Public re] PProved Ny
: A5 ibation is uniisga 4oL e o
) Q® "1 ~: p~nd o

LS P Y
ool

o
e




. -
e e N A N LN R

amoam n'cmmhm :m

;B
T s o SLRIITE & L0 vl SRR

MZLASSIFIED .

SECUA "y CLASSIF 1CATION OF THIS PAGE .

J

) REPORT DOCUMENTATION PAGE
te SEOOART SEI. TV ZoaSH F CAYTION I RESTRICTIVE MARKINGS
! U LASSIFIED
Ao SELLR TY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABIL/TY OF REPORT
Apprcved for public release; distribution
2t JECLASSIFICATION.DOWNGRADING SCHEDULE un.imited.
4 FERECAMING ORGANIZATION REPORT NUMBER!S, 5 MONITORING ORGAN(ZATION REPORT NUMBE RIS,
e o0 TCZE26% 74837 Lnnual Repor-

T TR o, e AFOSR-TR- 85-0001 .

0a NaNE OF PERFORM&NG ORGANIZATION |5o OFFICE SYMBOL 78 NAME OF MONITORING ORGANIZATION

I, Sraze Jniversity (11 applicabic R
R o ) A Fos N, o
T, aearch Toundaton Air Torce Office of Scientific Research )
o. ADDRESS +City >diate and A1i Code 70 ADORESS 1(itn dtate and Z1P Coac)
Depnrtnment o freventive Meaicine and Directorate of Mathematical & Information
Denarinent o7 Tolumbus O 43217 | Sciences, Eolling AFB DT 20332-6448
B8 NAME OF FUNDING 'SPONSORING Bb. OFFICE SYMBOL |9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBE R w .
ORGANIZATION 11f applicabdie)
LT 28R NI AFOSE-82-0307 )
8 ACISRESS (i, State and ZIP Code) 10. SOURCE OF EUNDING NOS =
PROGRAM PROJECT ‘ TASK 1 WCRK UNIT »
ELEMENT NO. NO 1 NC l NG ’
20332-6448 61102F 2304 | AS j
! ;

NG THDEFZNDENT COMPONENT FAILURE TIMES, Ir THEY ARE AJCTUALLY EPENDEN- y I1ii -

: 2 : ‘ DI ST EMIET REEORT  GRANUT AC-QSBafc=0307 o SEPTENRER 1083 o AR

12. PERSONAL AUTHORIS) /SLPTENBER 984, R

Morivin L. Moeschborger and John P. Klein —

13s. TYPE OF REPORT 13p. TIME COVERED 14. DATE OF REPORT (Vr Mo.. Day) 15. PAGE COUNT -
Thterin FROM 1/9/83 YO 30/’9/84 26 OCT 84 109 :

15. SUPPLEMENTARY NOTATION

1 CCSATI CODES 18. SUBJECT TERMS rContinue on reverse 1f nccessar and identify by diock number) ___...

fg.s | gRoue | suB GR jodeling serles systems; system reliability; competing risks;

I i ivariate exponential distributions; test for ;ndependence*

~onsister.y oi the prcduct 1life estimator; dependent risks
sanima+iorn- of caopnaonent 1ife

' 19 AESTRACT Conunue on reve-se f necessary and iaentify by biock numboer:

overa.l objective of this proposal is to investigate the robustness to departures from
'Adcpwnd:ncs of methods currently in use in reliability studies when competing failure
medes cr competing causes of failure associated with a single mode are present in a series
system. The first specific aim is to examine the error one makes in modeling a series
system by a mode. which assumes statistically independent component lifetimes when in fact
the component lifetimes follow some multivariate distribution, The second specific aim is
to assess the effects of the independence assumption on the error in estimating component .
parameters from life tests on series systems. In both cases, estimates of such errors will R
be determined via mathematical analysis and computer simulations for several prominent 1.f
multivariate distributions. A graphical display of the errors for representative distribu-
tione will be made available to researchers who wish to assess the possible erroneous .
assumption of independent competing risks. A third aim is to tighten the bounds on '
estimates of component reliability when the risks belong to a general dependence class of
distributions (for example, positive quadrant dependence, positive regression (CONTINUED)

20 DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

NCLASSIFIED/UNLIMITED & SAME AS APT. _ DTIC USERS CLASSIFIED

32a "NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE NUMBER 22¢c. OFFICE S$YMBOL
tinclude Area Code:

. Brian W. Woodruff (202) 767- 5027 NM

DD FORM 1473, 83 APR EDITION OF 1 JAN 73 IS OBSOLETE. =

SECURMITY CLASSIEICATION CF TS PAGE




R o - B
SRR . .
. —_—— - — e —— -

TLICLASSITIED
- SECURITY CLASS'FICATION OF TH!S PAGE B .

~ TTUY =, ARTTRA T, TONTINUED: dependence, elc.). Major deczisions invelvling reliabiliscy
ur compoting risk methodology, nave been mad: in the past and will continue
o TUade Tuture.  Th smudy wiil provide the user ol such techniques with a
P . o - oandersranding of the robustness of the analyses to departures from independent
FIoil, AT alidmlt . .n commoniy made by the methods currently In use.

N ‘
- \]
- - -
R
.. BERS
. N -

NN
R
e
Nk
e T

i'
Pt
po - ™ bl
!

- by e
[ T
b,




ﬂ Annual Report for the
Air Force Qffice of Scientific Research

by
The Ohio State University Research Foundation

1314 Kinnear Road
- Columbus, Ohio 43210

for

Melvin L. Moeschberger
Associate Professor of Preventive Medicine

and
) John P. Klein .
Assistant Professor of Statistics j
r Title: Effects of Assuming Independent Component Failure Times, .

if They are Actually Dependent in a Series System
;; Period Covered: September 1, 1983 to September 30, 1984 ;ﬁ;fﬁ
. Principal Investigators: Melvin L. Moeschberger and John P. Klein :
Phone: (614) 421-3878 or (614) 422-4017
Business Contact: Ralph M. Metzger, III or Charles C. Hall

Phone: (614) 422-2655 or (614) 422-3730

g 'l Date of Submission: October 26, 1984 ) ) s
v \ - '/ e N
Melvin L. Moeschberger, ;h.D. Martin D, Keller, M.D., Ph.D, S
- Chairperson of Preventive Medicine L

i R
) L
¢ Ny \( '

Jagdish Rustagi Ph D.
Chairperson of Statistics

f- puty Director of Dev,loiment e
T hio State Univergity Research Foundation L.
he onte ¢ Approved for publie release} ST

- distributionunlimited.

:r.-- q“.- -.’d' q.- -
DV MEALAL -'\.-‘.r ™




- - - - . . » . v - W e v ad - - . v Chd - - -
T T T T T T T ="

Moeschberger, Melvin L.

F A. Table of Contents

Topic Pages

Technical Section

v
e

Abstract
Specific Objectives
Introduction to Problem and Significance of Study
o Progress Report on First Year's Work
L Methods

Literature Cited 10-12
Appendices A,B,C,D,E 13

-2

-7

O 00 WU W

P ]

-

i

&
)
3 e
o
} e

5|
N

r.on

i'--_' S s N -',-.:_._‘, W A T \ . _.-\,- -"-\ -‘-.-.. -‘ ..... W e e . R ‘. o
’a"-"-~.f.f-,-‘~ R AR AL PRC WL WAL W PN A AL BN AR AR A N \ ~‘\-'.'.P ) A.&'_l\ ‘ . \.A'A:! .\:a“\ _..n".\;‘;




> o st Pl e Y. TR v e A a3 Chal e

k. 3

j Moeschberger. Melvin L.

B. TECHN ICAL SECTION
R I. Abstract

—Nghe overall objective of this proposal is to investi-~
gate the robustness to departures from jndependence of methods
currently 3in use in reliability studies when competing failure
- modes OF competing causes of failure associated with a single
mode are p:.:esent in a series system. The first specific aim
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' play of the exrors fox representative distributions will be
r made available to researchers who wish to assess the possible
erroneous assumption of jndependent competing risks. A third
aim is to tighten the bounds on estimates of component relia-
bility when the risks belong to a.general dependence class of
distributions (for example} posxtive quadrant dependence, posi-
tive regression dependence, etc.). Major decisions involving
reliability studies. pased on competing risk methodologyr have

i.
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partures from independent risks, an assumption commonly made
by the methods currently in use.
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II. Specific Objectives

The overall objective is to investigate the robust-
ness to departures from independence to methods currently in
use in reliability studies when competing failure modes or com-~
peting causes of failure associated with a single mode are
present in a series system. We shall also refer to such com-
petitive events as competing risks. The approach will be through
the investigation of certain aspects of specific parametric multi-
variate distributions or by classes of distributions which are
appropriate in reliability analyses when there are competing
risks present.

The specific objectives are:

1) to assess the error incurred in modeling system
life in a series system assumed to have indepen-
dent component lifetimes when in fact the com-
ponent lifetimes are dependent.

2) to assess the error in estimating component param-
eters (i.e., component reliability, mean com-
ponent life, etc.) in a series system employing
either parametric or nonparametric medels which
assume independent component failure times when
in fact the lifetimes are dependent and follow
some plausible multivariate distribution.*

3) to derive bounds on component reliability when
the failure modes are dependent and fall in a
particular dependence class (e.g., positive quad-
rant dependence, positive regression dependence,
etc.).

4) to develop tests of independence, based on data
collected from series systems, by making some
restrictive assumption about the structure of the
systems. **

* A plausible parametric multivariate distribution will be H
one that satisfies one of the following conditions: -

i) the distribution of the minimum of the component
failure times closely approximates widely accept- S
ed families of system life distributions. - ::J

or ii) the marginal distributions closely approximate ]
the distributions of component failure times in Lo
the absence of other failure modes. L

**This objective has been added to the original objectives be-
cause it answers a natural question raised by our preliminary 9
investigation.
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III.  Introduction to Problem and s;ghificance of Study

Alvin Weinberg (1978) in an editorial comment in the’
published proceedings of a workshop on Environmental Biologi-
cal Hazards and Competing Risks noted that "the question of .
competing risks will not quietly go away: corrections for com-
Peting risks should be applied routinely to data.® The problem
of competing risks commonly arises in a wide range of experi-
mental situations. Although we shall confine our attention
in the following discussion to those situations involving
series systems in which competing failure modes or competing
causes of failure associated with a single mode are present,
it is certainly true that we might just as easily speak of .
clinical trials, animal experiments; or other medical and bio-
"logical studies where competing events interrupt our study of

the main event of interest (cf. Lagokos (1979).

Consider electronic or mechanical systems, such as
satellite transmission equipment, computers, aircraft, missiles
and other weaponry consisting of several components in series.
Usually each component will have a random life length and the
life of the entire system will end with the failure of the
shortest lived component., We will examine two situations more
closely in which competing risks play a vital role.

First, suppose we are attempting to evaluate system life
from knowledge of the individual component lifetimes. Such
an evaluation will utilize either an analysis involving math-
ematical statistics or -a computer simulation.. At a recent
conference on Modeling and Similation, McLean (1981) presented
a scheme to simulate the life of a-missile which consisted of
many major- components in series,.- The failure distribution asso-
ciated with each component was assumed to be known (usually
exponential or Weibull.) :To arrive at the system failure dis-
tribution, the components were assumed to act independently of
each other. Realistically, this may or may not be the case.
If the component lifetimes were dependent for any reason, the
computed system failure distribution (as well as its subsequent
parameters such as system mean life and system reliability for
a specified time) would only crudely approximate the true .
distribution. The first specific aim of this proposal is to

- ascertain the error incurred in modeling system life in a
series system assumed to have independent component lifetimes
(i.e., risks) when, in fact, the risks are dependent. :

Second, suppose we wish to evaluate some aspect of the
distribution of a particular failure mode based on a typical
life test of a series system. The response of interest is the
time until failure of a particular mode of interest. Prequently
this response will not be observable due to the occurrence of
some other event which precludes failure associated with the
mode of interest. We shall term such competing events which
interrupt our study of the main failure modes of interest as
competing risks. .
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ii Competing risks arise in such reliébility studies when

- 1) the study is terminated dve to a lack 6f funds or the
» pre~determined period of observation has expired
- (Type I censoring).

o 2) the study is terminated due to a pre-determined number
.I of failures of the particular failure mode of interest
being observed (Type II censoring).

3) some systems fail because components other than the
one of interest malfunction. '

o 4)  the component of interest fails from some cause other
' than the one of interest.

In all four situations, one may think of the main event of

interest as being censored, i.e., not fully observable. In the

' first two situations, the time to occurrence of the event of

- interest should be independent of the censoring mechanism. In

such instances, the methodology for estimating relevant reliabili-

ty probabilities has received considerable attention (cf. David

and Moeschberger (1978), Kalbfeish and Prentice (1980), Elandt-

Johnson and Johnson (1980), Mann, Schafer, Singpurwalla (1974)

. and Barlow and Proschan (1975) for references and discussion} .

i' In the third situation, the time to failure of the component of
interest may or may not be independent of the failure times of
‘other components in the system. For example, there may be
common environmental factors such as extreme temperature which
may affect the lifetime of several components. Thus the question

o of dependent competing risks is raised. A 'similar observation

- may be made with respect to the fourth situation, viz., failure

II times associated with different failure modes of a single com-
ponent may be dependent. For a very special type of dependence,
the models discussed by Marshall-Olkin (1967), Langberg, Proschan S
and Quinzy (1978), and Langberg, Proschan, and Quinzy (1981) PN
allow one to convert dependent models into independent ones. T

) If no assumptions whatever are made about the type of
dependence between the distribution of potential failure times, -t
there appears to be little hope of estimating relevant component e
parameters. -In some situations, one may be appreciably misled

o (cf. Tsiatis (1975), Peterson (1976)). However, as Easterling

B0 (1980) so clearly points out in his review of Birnbaum's (1979)

) monograph -

CTe e
g,
Aettindnd

*there seems to be a need for some robustness
studies. How far might one be off, quantita-
tively, if his analysis is based on incorrect

v Y e .
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assumptions?” . ]

The second specific aim will address this important SRV
issue. First if a specific parametric model which assumes £5;
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independent risks has been used in the analysis, it would

be of interest to know how the error in estimation: is
affected by this assumption of independence. That is, if
independent specific parametric distributions are assumed
for the failure times associated with different failure
modes when we really should use a bivariate (or multivariate)
distribution, then what is the magnitude of the error in
estimating .component parameters? Secondly, one may wish to
allow for a less stringent type of model assumption, and ask
the same question with regard to the estimation erxrror. That'
is, if a nonparametric analysis is performed, assuming in-
dependent risks, when some types of dependencies may be
present, then what is the magnitude of the estimation error?

The third specific aim will attempt to obtain bounds on
the component reliability when the failure times belong to
a broad dependence class {(e.g., association, positive quadrant
dependence, positive regression dependence, etc.), More
details will be presented in the methods section.

In summary, competing risk analyses have been performed
in the past and will continue to be performed in the future.
This study will provide the user of such techniques with a
clearer understanding of the robustness to departures from
independent risks, an assumption which most of the methods
currently in use assume. '
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IV. Progress Report on Second Year's Work

= A summary of the first year's work is reported in the annual report
N dated October 26, 1983. The paper dealing with the Gumbel (1960) AN
bivariate exponential model appeared in the August 1984 issue of BN
Technometrics. A copy of this paper will be included in Appendix A.
Also, the paper dealing with the asymptotic bias of the product limit
estimator under dependent competing risks has been accepted for publica-
tion in the Journal of the Indian Association for Productivity,
T Reliability, and Quality Control. This article is to appear in 1984,
Eﬁﬁ (See Appendix C of the first year's annual report.) The paper on tests

for independence with censored data has been revised and has now been
accepted for publication in the Proceedings of the Conference on

. Reliability and Quality Control held at the University of Missouri in
25N June 1984, The paper was presented as an invited paper at that meeting.
A copy of the revised paper is included in Appendix B.

1

A paper which develops improved bounds on component reliability
based on system data is displayed in Appendix C. These bounds, which -
are tighter than those of Peterson (1976), are obtained by specifying
a range of possible concordances for the various modes of failure in a
series system. This work was presented at the National Statistical
Meetings in Philadelphia in August 1984,

0!
L}
!

Another paper, in a slightly different vein, which deals with
assessing the goodness of several methods of estimating the survival
function (reliability) when there is extreme right censoring, is
displayed in Appendix D. This work, which was presented at the
Spring statistical meeting in 1984 in Orlando, Florida, has been S
accepted for publication in Biometrics. i

Another paper, which deals with reduced bias estimators of the
joint reliability function for the Marshall-Olkin and Block-Basu
bivariate exponential distribution, has been tentatively accepted for
publication in Sankya. A copy of this paper appears in Appendix E.

Finally, work is near completion with respect to evaluating the
consequences of erroneously assuming independence when modeling system
reliability from complete component information for all three Gumbel S
bivariate exponential models, the Downton's bivariate exponential iy
model, and Oakes bivariate model. It is anticipated that a paper T
will be written in the next month. This work will be presented in an
invited talk at the Spring statistical meeting in Raleigh, North
Carolina. Another paper will be written by January 1, 1985 which
examines the impact of the independence assumption on the magnitude
of the estimation error in estimating component reliability and mean
life from data collected from series systems,
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V. Methods

We refer to pages 8-52 of the original proposal for a discussion
of the general methodology.

LI LS I Y TR R S R T t . . RSN - R
..-._-.\.~.~'.*.-.-.‘~.-.-.-.~.-.-.-.-'..'_ s N T I R
- - - * . ~ . . - - - - - . Te L - .t . . W PR -

LI . e T T "1 = > ~ 2 * > ] ‘I-‘l ‘"‘ .‘ - A a Lo a Lo - al o ° a W g ¥

RS

[




.....................................................

Moeschberger, Melvin L.

LITERATURE CITED

Ahmed,A.N., Langberg, N.A., Leon, R.V. and Proschan, P._(1978).
Two concepts of positive dependence, with applications in
multivariate analysis. Statistics Report No. M486, Florida
State University, Tallahassee.

Barlow, R.E. and Proschan, P. (1975). Statistical Theory of
Reliability and Life Testing - Probability Models. Holt,
Rinehart and Winston, Inc., New York.

Basu, A.P. and Klein, J.P. (1982). Some recent results in competing
risks. Survival Analysis. Crowley and Johnson, Editors, 216-229.

Berman,S.N. (1963). Notes on extreme values, competing risks, and
semi-Markov processes. Ann. Math. Statist. 34, 1104-1106.

Birnbaum, 2Z.W. (19795. On'the Mathematics of Competing Risks.
U.S. Dept. of HEW. Publication No. 79-13Sl. '

Chiang, C.L. (1968). Introduction to Stochastic Processes in
Biostatistics. Wiley, New York. )

Cox, D.R. (1962). Renewal Theory. Methuen, London.

David, B.A. (1974) . Parametric approaches to the theory of coméeting
risks. Pp. 275-290 in: Proschan and Serfling (1974).

David, H.A. and Moeschberger, M.L. (1978). Theory of Competing
Risks. Griffin, London. :

Easterling, R.G. (1980). Book review of Z.W. Birnbaum monograph.
Technometrics 22: 131-132.

Elandt-Johnson, R.C. and Johnson, N.L. (1980). Suxvival Models
~ and Data Analysis. Wiley, New York.

Fisher, L. and Kanarek, P. (1974). Presenting censored survival
data when censoring and survival times may not be independent.
Reliability and Biometry, Statistical Analysis of Lifelength.
Sa.m, "36?

FPishman, G.S. (1973). Concepts and Methods in Discrete Event A
Digital Simulation. Wiley, New York. _

Friday, D.S. and Patel, G.P. (1977). A bivariate exponential model RS
with applications to reliability and computer generation of random RURNRN

variates. Theory and Applications of Reliability, Vol. I. C.P. g}}
Tsokos and I.N. Shimi, Editors, 52/-548. R

cail, M. (1975). A reviéw and critique of some models used in 4 A
competing risk analysis. Biometrics 31, 209-222. . L

o l s 1
. RIS
P
P )




Gibbons, J.D. (1971). Nonparametric Statistical Inference.
McGraw-Hill Book Company, New York.

Gumbel, E.J. (1960). Bivariate exponential distributions. J. Amer.
Statist. Assoc. 55: 698-707. )

Hoel, D.G. (1972). A representation of mortality data by competing
risks. Biometrics 28, 475-488.

Johnson, N.L. and Kotz, S. (1972). Distributions in Statistics:
Continuous Multivariate Distributions. Wiley, New York.

Kalbfleisch, J.D. and Prentice, R.L. (1980). The Statistical
Analysis of Failure Time Data. Wiley, New York.

Kaplan, E.L. and Meier, P. (1958). Nonparamcatric estimation
from4incomplete observations. J. Amer. Statist. Assoc. 53,
457-481. '

Klein, J.P. and Basu A.P. (1981). Replacing Dependent Systems
by Independent Systems in a Competing Risk Framework with
Applications’. Submitted for publication.

Kotz, S. (1974). -Multivariate Distributions at a Cross Road
in Statistical Distributions in Scientific Work VI. Reidell
Publishing Co., Boston, 247-270.

Lagakos, S.W. (1979). General right censoring and its impact on
the analysis of survival data. Bicmetrics 35: 139-156.

Langberg, N., Proschan, P. and Quinzi, A.J. (1978). Converting
Dependent Models into Independent Ones, Preserving Essential
Peatures Ann- Prob., 6, 174-181,

Langberg, N., Proschan, P. and Quinzi, A.J. (1981) . Estimating
Dependent Lifelengths with Applications to the Theory of
Competing Risks . Ann. ‘Statist. 9:157-167. .

Lee L. and Thompson, W.A., Jr. (1974). Results on failure time and
g:;tein for ‘the series system. Pp 291-302 in: Proschan and Serfling
74) .

Mann, N.R. and Grubbs, F.E. (1974). Approximately optimum con-
fidence bounds for system reliability based on component test data.
Technometrics 16:335-347. °

Mann, N.R., Schafer, R.E., and Singpurwalla, N.D. (1974) Methods
for the Statistical Analysis of Reliability and Life Data, Wiley, N.Y.

Marshall, A.W. and Olkin, I..(l967). A Multivariate Exponential
Distribution J. Amer. Statist. Assoc. 66, 30-40.

McLean, T.J. (198l). Customer's Risk Evaluation. Paper presented to
Modeling and Simulation Conference. Pittsbu:gh,_?a.

Mendenhall, W. and Lehman, E.H., Jr. (1960). An approximation to
the negative moments of the positive bincmial useful in life

testing. Technometrics 2:227-242. .

-———,

@ o
AR
’. e '1 . . .
ettt el
AR A




Moeschberger, Melvin L.

Millex, D.R. (1977). A note on independence of multivariate life-
times in competing risks. Ann Statist.5: 576-579.

Moeschberger, M.L. and David, H.A. (1971). Life tests under com-
peting causes of failure and the theory of competing risks.
Biometrics 27, 909-933.

Moeschberger, M.L. (1974). Life tests under dependent competing
causes of failure. Technometrics 16, 39-47.

Oakes, D. (1982). A model for association in bivariate survival
data. J. Roy. Statis. Soc. 44:414-422.

Peterson, A.V., Jr. (1976). Bounds for a joint distribution function
with fixed sub-distribution functions: Application to competing
risks. Proc. Nat. Acad. Sci. 73: 11-13.

Peterson, A.V., Jr. (1978). Dependent compet@ng risks: bounds for
net survival functions with fixed crude survival functions.
Environmental International 1: 351-3SS.

Prentice, R.L., Kalbfleisch, J.D., Peterson, A.V., Jr., Flournoy,
N., Farewell, V.T., and Breslow, N.E. (1978). The analysis of
failure times in the presence of competing risks. Biometrics 34:
541-554. : .

Proschan, F. and Serfling, R.J. (Eds.) (1974). Reliability and
Biometry: Statistical Analysis of Lifelength. Society for
Industrial and Applied Mathematics,

.Philadelphia, Pennsylvania.

Rose, D.M. (1973). Investigation of dependent competing risks.
Ph.D. dissertation, University of Washington.

Thompson, W.A., Jr. (1979). Technical note: competing risk pre-
sentation of reactor safety studies. Nuclear Safety 20: 414-417.

Tsiatis, A. (1975). a nonidehtifiability aspect of the problem
of coampeting risks. Proc. Nat. Acad. Sci. 72, 20-22.

Tsiatis, A. (1977). Nonidentifiability problems with the reliability
approach to competing risks. Technical Report Na. 490, University
of Wisconsin-Madison.

Wbinberg, Alvin (1978). Editorial. anironﬁental International
1:285-287.

e

1.7




13.

APPENDIX 2

AN AL AL S T R SRl A SRS
I RO W LIPSO PP U P S lF P Sl SR T R, TS, NG Nl Sl S




e rr———————— ————— e S S—

« N

CONSEQUENCES OF DEPARTURES FROM INDEPENDENCE IN EXPONMENTIAL
SERIES SYSTEMS

M. L. Moeschberger . John P. Klein

Department of Preventive Department of Statistics
Medicine

The Ohio State University The Ohio State University

Columbus, Ohio 43210 Columbus, Ohio 43210

30 September, 1984

Annual Report for Period 1 October 1983 - 30 September, 1984

AFOSR - NM

Building 410

Bolling Air Force Base
Washington DC 20332

AFOSR-PKZ

Building 410

Bolling Air Force Base
Washington DC 20332

S WY
"' . Lo . M ,.. '-.‘

~.

. cwe e 4 e

¥ AP St 45 WO Wp By g @
e e
PN

.
[Fa 2 2 o o0 JU o dL S TRV
. _.‘
(I




o TECHNTMETRICS «, VOL 26, NO. 3, AUGUST 1984

Consequences of Departures From
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This article investigates the consequences of departures from independence when the compo-
nent lifetimes in a series sysiem are exp ially distributed. Such departures are studied
when the joint distribution is assumed to foilow a Gumbel bivariate exponential model. Two
distinct situations are considered. First, in theoretical modeling of series systems, when the
. distribution of the component lifetimes is assumed, one wishes to compute system reliability
and mean system life. Second, errors in parametric and nonparametric estimation of compo-
nent reliability and component mean life are studied based on life-test data coliected on series
systems when the assumption of independence is made erroneously. Systems with two com-
ponents are studied.

2
H

KEY WORDS: Competing risks; Component life; Modeling series systems; Robustness
studies; System reliability; Gumbe! bivanate exponential.
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1. INTRODUCTION

Consider a system consisting of several components
linked in series. For such a system the failure of any
one of the components causes the system to fail.
Common assumptions made in modeling and ana-
lyzing data from such a system are that the compo-
nent lifetimes are independent and exponentially dis-
tributed. Many authors have considered the problem
of analyzing a series system with exponential compo-
nent lives. For example, confidence bounds for system
reliability assuming independent exponentially dis-
tributed component lifetimes were presented in Mann
(1974) and Mann and Grubbs (1974). (See Mann,
Schaler, and Singpurwalla 1974 for 2 more compre-
hensive review.) More recently, work invoking the
assumption of independent exponentially distributed
lifetimes has been presented by Chao (1981) and Mi-
yamura (1982). Estimation of component parameters
from series system data has been treated by Board-
man and Kendell (1970) in the context of independent
exponential component lives. Some authors suggest a
nonparametric alternative to the estimation of com-
ponent reliability based on series system data (com-
pare Kalbfleisch and Prentice 1980 and Lawless 1982).

The assumption of independence is essential to
these analyses and an important concern. Scveral au-
thors have shown that this assumption, by itsclf. is not
testable because based on data from a series system,
there is no way to distinguish between an independent
and a dependent model. (See Tsiatis 1975, Peterson

1976. and Basu 1981 for a discussion of nonidentifia-
bility results) In many situations one may be appre-
ciably misled by the independence assumption.

Lagakos (1979), in & study of the effects of various
types of dependence among component lifetimes,
notes that most methods of analysis have assumed
noninformative models of which independence is a
special case. He points out, “it is important to be
aware of the possible consequences of making this
assumption when it is false™ (p. 152). Furthermore,
Easterling (1980) states in bhis review of Bimbaum’s
(1979) monograph on competing risks, “there seems to
be a need for some robustness studies. How far might
one be off, quantitatively, if his analysis is based on
incorrect assumptions?” (p. 131).

In this article we consider the consequences of de-
partures from independence when the component life-
times are exponentially distributed. Such departures
may be related to some common environmental factor
that is present only when the components are linked
together in series. The load each component is subject
to is either reduced or increased according to the age
of the system. To study such departures, we have
seiected a model proposed by Gumbel (1960).
Gumbel's model retains the assumption of exponen-
tiaiiv distributed componen: lifetimes while allowing
the ilexibility of both positive or negative mild corre-
lation between component lifetimes.

The effects of a departurc from the assurnption of

independent component lifetimes in a series system
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will be addressed for two distinct situations. The first
situation arises in modeling the performance of a the-
oretical series system constructed from two compo-
nents whose lifetimes are exponentially distributed.
Here, based on testing cach component separately or
on engineering design principles, it is reasonable to
assume that the components are exponentially distrib-
uted with known parameter values. Based on this
information, we wish to calculate parameters such as
the mean life or reliability of a series system construct-
ed from these components. In Section 2 we describe
how the values of these quantities are affected by
departures from independence when the component
parameters are completely specified. In Section 3 we
study the performance of the Mann-Grubbs (1974)
confidence bounds on system reliability for small
sample sizes and for varying degrees of correlation,
when the component parameters are estimated from
component data.

The second situation involves making inferences
about component lifetime distributions, reliabilities,
and mean lives from data collected on series systems.
Commonly, data collected on such systems are ana-
lyzed by assuming a constant-sum model, of which
independence is a special case (compare Williams and
Lagakos 1977 and Lagakos and Williams 1978). In
Section 4 we study the properties of the maximum
likelihood estimators of component parameters calcu-
lated under an assumption of independent ex-
poneniial component lifetimes when the component
lifetimes are Gumbel bivariate exponential. Because of
the widespread use of nonparametric estimates of
component reliability, we also present in Section § the
estimation error of the Kaplan-Meier (1958) estimator
when the assumption of independence is made er-
roneously.

2. MODELING SYSTEM RELIABILITY FROM
COMPLETE COMPONENT INFORMATION

Consider a two-component series system with
component life lengths X,, X ;. Suppose that X, has
an exponential survival function

Fit) = P(X; > 1) = exp (~41),
A, >0, i=1,2

This assumption is made on the basis of extensive
testing of each component separately or on knowl-
edge of the underlying mechanism of failure. The
value of i, is assumed known. If X,, X, are indepen-
dent, then the time to system failure has an ex-
ponential distribution with failure rate 42 = 4i; + 4,,
and the system reliability is given by

Fi(1) = P{min (X,. X ;) > t]independence]
= exp { — A1), .1n

TECHNOMETRICS «, VOL. 26. NO 3. AUGUST 1984

Supposc that the actual joint distribution of (X,
X ,) has the form proposed by Gumbel (1960), namely,

PX; >xi. Xy > x;)=[exp(~2A;x, — 4;x,)]
x[1+xl—exp (—4;x,)X1 —exp (=43 x3))). (22)
The joint probability density of (X,, X,)is ’
Sy, x3) = 2,45[exp (= 2,x;, =2, x,))
x[1+ax2exp(—A,x,) - 1)
x2exp(-1,x)- 1) (23)

where in both (2.2) and (2.3), x,, x5, 44, 4, >0,
—1 < a2 £ 1. This distribution has marginal survival
functions equivalent to those for the independent
model, which, in part, is the reason for choosing it.
The correlation between X,, X;isp = a/4,anda =0
is equivalent to X, X, being independent. For p > 0
{<0) the components are positively (negatively)
quadrant-dependent (see Barlow and Proschan 1975).
Furthermore, the conditional expectation of X ,, given
X 2 = X3, is

1
E(Xy}X; =x)==—[1+2p —4p exp (~4;x,)).
4y

If (X4, X ;) have the joint distribution (2.3), then the
true system reliability is

Fplt) = P{min (X,, X;) > t]dependence]
= exp (—Af[1 + 4p(1 — exp (—4,1))
x (1 —exp{(—/i,]. (2.4)

From (2.1) and (2.4) we see that the error in mod-
cling system reliability is

A() = Fft) ~ Fi(0)
= 4p(1 —~ exp (= 4,0)](1 ~ exp (~4,1)]
x exp (—(1; + 2;)). (25)

Note that { A(1)| increases as | p | increases, for fixed 4,,
43,and 1. The magnitude of A{¢), of course, depends on
Ay, 23.t,and p. When 1, = 1, = ¢, one can show that
A{t) is maximized at ¢t = {In 2)/¢ (fixing p and ¢). The
value of { Air}| at this point is | p|/4, which is at most
1/16. Representative values of Fy(t) for 4, = 1, 4, =

1.5, and p = —.25, —.1250, .125, and .25 are plotted
in Figure 1. The curve with p = 0 corresponds to the
system reliability if the assumption of independence is
true. Since most applications of interest involve relia-
bilities of .75 or greater, in Figure 2 we plot the ratio
of the 100 pth upper percentiles under dependence and
independence versus the correlation. From Figure 2 it
appears that when the predicted system reliability
under independence is greater than 90, misspecifying
the dependence parameter has little effect. In the range
where the predicted system reliability under indepen-
dence is less than .75, however, misspecifying the de-

B A M AT i e b i e aen o ipe e i




o e tet e e )
TR W PR R N S I A PP N I I LI

DEPARTURES FROM INDEPENDENCE IN SERIES SYSTEMS 279

1,02

0.73 X

Y-
[

bids

.50
’:

Sx:.i,T‘EH ﬂ%L 1ABIL

0,28

0,13

.00 0.50 .00 1.50 2.00 2.50 3.00
TIinE

Figure 1. System Reliabiiity for
Model, /iy =1,2,=15.

Gumbel’'s

pendence parameter may lead to errors exceeding 6%.
Maximum values of | A(f) | are presented in Table 1 for
4y = 1 and various values of 4,.
The mean time to system failurc based on (2.1),
assuming independence, is
oy = 12, + 23),
and that based on (2.4) is

1
(A1 +4)

2.6)

Hp ™

1 1
-t "’[zu. TR @h i) ¥ zzz)]'
@n
The amount of error in modeling system mean life is
6pi 4,
(A + 22024, + 2,44 + 24,)

- 60244, 1y
(225 + 4,2, + 24,)°

Hp = By =

2.8)

whose absolute value obviously increases as |p| in-
creases. If 4, = 4,, this error reduces to 2py,/3, which
has a maximum absolute value of y, /6.

It is apparent from Table 1 and Equations (2.5) and
(2.8) that the error in modeling system reliability and
mean system life, based on independence, increases as
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Figure 2. Ratio of 100 pth Percentile Under De-
pendence and Independence Versus Correlation for
;-‘ =1 , A‘.z - 1 5.

| p| increases and is a function of the relative sizes of 4,
and 4,. In particular, when the mean life of one com-
ponent is substantiafly greater than the mean life of
the second component, then the behavior of the
system is well approximated by the behavior of the
shorter-lived component acting alone. This can be
seen in (2.4) and (2.7) by letting 4, — O. In this instance
we also see, from (2.5) and (2.8), that the amount of
error incurred by assuming independence is negligible.

3. ESTIMATING SYSTEM RELIABILITY
FROM COMPONENT DATA
A common practice in predicting system reliability
is to test each of the components independently and
then to use the data to obtain confidence bounds on

Table 1. Maximum Valuesof |A(t)|fori, =1
and Various Values of A,

4y Max | A ]

2 056
4 041
8 025
18 014
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systemn reliability. These bounds, obtained by Mann
and Grubbs (1974), assume that the component life-
times are exponential and that the components act
independently when linked in series. In the bivariate
case the bounds are computed as follows: For the jth
component, suppose that n; prototypes have been
tested until r, (< n) failures occur. Let Z; be the total
time on test for the jth component. Define

M* = Z (r;~WZ, + Z_".z:_'l"ﬁ

X
Te-vz O
and
- 4
Vo=~ tyz: + &= V2 (35

R

An approximate y-level lower confidence bound for
system reliability at time ¢, is

exp [~ M*{1 = V*(OM*3) 4 n(V*)V3(3M*)}*],
(3.3)

vhere 1, is the 100y percentile of a standard normal
‘andom variable.

When the system being evaluated has dependent
:‘omponents, these bounds may be misleading. The
yoblem is that component data are independent,
iince the components are tested separately, but when
hey are put together into a system, some interdepen-
Jence may develop. Of course, such dependence is not
etectable in the absence of some system data, since
the data on compunents we see are independent. To
study the performance of the bound (3.3) when the
correct system model is the Gumbel model (2.2), a
simulation study was performed. For each simulated
sample, n; observations from exponential populations
with mean 1/;, j =1, 2, were simulated. The two
samples were gencrated independently. The confi-
dence bound (3.3) was obtained. This was then com-
pared to the true system reliability at various p’s
obtained from (2.4). Ten thousand such bounds were
simulated for each set of parameter values. The esti-
mated coverage probabilities for the Mann-Grubbs
bounds (i.e., the proportion of times that the Mann-
Grubbs intervals assuming independence actually
contained the true system reliability) for n; = n; = 3,
510, 2, =10, 2, =1, 5, at ¢, =.1 are reported in
Table 2. Here the true system reliability under depen-
dence ranges from .7684 at p = ~.25 to .7891 at
p = .25, witha valueof .7788 4t p = .0.

The results in Table 2 show that at high negative
correlations, the coverage probabilities are signifi-
cantly lower than claimed under independence, and
for a high positive corrclation, the intervals are con-
servative. This trend becomes more exaggerated as n,,
n, increase because the bound approuches the reliabil-
ity under independence. As seen in Section 2. the true

TECHNOMETRICS
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Table 2 £stimated Coverage Probabilities
for Mann - Grubbs Bounds
(=4, =10,4,=15)

Correlation

-25 -15 -p05 o 05 15 25

n, n,

95 9241" 9411° 9474 9505 9527 95.80* 96.22°
90 €T 20" 88.42% 89.32° 89.78 90.20 91.18° 92.15°

7S 7103" 7253° 74 13* 7488 7658 77.34* 7881

95 9319 94.08° 9490 9526 9562° 96.17* 9681
90 £7.12° 88.48* 8985 9039 91.10 92.13* 93.14°
7S 6968° 7202 74.10° 7513 76.14* 78.32* 80.C3*

10 10 95 9203° 9342° 94538 9508 9551 96.42* 9714
10 10 .90 €593 87.70% 89.34* 90.27 9105° 92.56* 9393
10 10 .75 6777 70.90% 74.12" 7563 77.05° 79.87° 8256*

VOO W
VO WWwWw

* At least two s:andard errors above specified levet.

* At least two s:andard emrors below specified level.
NOTE: Standard evors of the above esti are 3ppx
.95 leve), .3 for the .90 level. and .4 tor the .75 Jeve).

ly .2 for the

reliability at ¢ is an increasing function of p so that
asymptotically coverage probabilities approach 0 (or
1) for p < 0(>0). For sample sizes in the range of 3 to
10, the estimated coverage probabilities for p < 0 are
statistically significantly lower than expected. On the
practical side, however, they are not of sufficient mag-
nitude to cause great concern, especially at y = .95.

4. PARAMETRIC ESTIMATION OF
COMPONENT PARAMETERS

In this section we are interested in examining how
the independence assumption affects the magnitude of
the estimaiion error in estimating component mezn
life from data coliected on series systems. That is, for
each system tested, we observe its failure time and an
indicator variable that tells us which component
caused the system to fail. We are interested in how
varying degrees of dependence affect the bias and
mean squared error (MSE) of the maximum likeli-
hood estimator of component mean life obtained by
assuming independent component lifetimes.

We assume that the two components’ survival func-
tions are F (1) = exp (—4,;1), i = 1, 2, and a life test is
conducted by putting n systems on test. We observe n,
systems failing because of failure of the ith component.
i= 1, 2 Let T denote the sum of all n failurs times.
From Moeschberger and David (1971). the maximum
likelihood estimator of 4;, assuming independence. is

Li=nT, i=1,2
so the estimator of component mean life, u, = 47 %, is
ai=T/in, if n >0 4.

Now suppose that we are in fact sampling from the
Gumbel distribution (2.3). For this model. component
mean life s the same as in the independent case. The
random ‘anables (n;, T) arc wmdependent (the con-
dinonal distribution of T given n,1s frec of a,). and 1, 1

.
~
"
}
3
-5
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binomal with parameters o and p, = Pmin (X,
X ) = X,). For this model,

i po=PX, <Xy

- { t N iy = Fxdiy
, My + 22 A+ AaK20, + 200 + 225"
with p, =1 ~ p,. From Mendenhall and Lehman
[ (1960), approximations to the moments of 1/n,, con-
' ditional on n; > 0, are
n-2
E1/mln > 0) = 2= 3)
. and
(n—2)n-13)

E(l/n}{n, > 0) = (4.4)

n*a — 1Xa - 2)’

where a = (n — 1)p;. The expected value of T is given
by nup, where y, is given by (2.7), and

2+10p ( 1
Got 2 P\@%, + Ag)

1
+ T ————
g +24)
Thus, the bias and MSE of j;, conditional on n; > 0,

. ETY =

)] +n(n—)ud. (4.9)

. under this model are
- . . (n—2up
)= E(f - p) = —yt;, (4.6) o
. B = B = 1) = o 5, - 1 g
. and
MSE (4) = E(T)E(1/n} |, > 0) 4
|
’ un—2pp
- -y, 47 -
(n—1p,—11" " 3 -l
.. " forim1,2 T
- We note that for large samples, %) B
_ tim B(i) =L2 -y, @8 °
aew P e - 1
2 . o .-
lim MSE () = (lim B(ﬁ;)) 4.9) - SO
.. LAad 3 L ] : B ; ‘-.
fori = 1,2 For i, = }, from (4.6), we sec that 1 ; ]
B(‘)-, + An - 2)p/3 5 [ ] b
H) = ('l - 3) Hy L -
By 2n = pp, Z S
= 4.'0 < Q- Sty
n-3" T3m-3) @19
A similar expression holds for B(;i,). Note that (4.10) = _ ‘
{ consists of two terms. The first term, reflecting sam- wed e e omoe o on o o 4
pling error. is positive for all n and dominates the bias S
expression for small n. The second term, reflecting Figure 3. Bias of j1, Under Gumbel's Model for R
modcling error, takes on the same sign as the corre- =14,=15. iy
' TECHNOMETRICS «, VOL 26, NO 3, AUGUST 1984 BREDES
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ation and domates for Large o approaching the ) ]
limitof 2p:, 3 - ]
When oy = 7:.

3 it Yy 2 2 [
. 2ujtnt = 2n = 1) uin = 2) i
MSE = -~
ASE Gy aln - Sen - 3) Onin — Sin — ) X :
x 4190 = 211p + 2An - 3kn — p). (3.11) T -2'3
As in the bias expression, the MSE reflects a sampling AR :-i
error term and a modeling error term. The modeling " B
error is a quadratic function of p for fixed n. For Ai

n > S, this error is increasing in p for
S 1 (191 - 21)

4(n=-3)n-10

and decreasing in p for °

< 1 _tm-21
d(n-2n—1)

For sample sizes between 5 and 21, the modeling
error, and hence the MSE, is a strictly increasing
function for all g e [~ 1. 4]. For n> 21, the mini-
mum MSE is achieved at p < 0. As n approaches =,
the value at which the smallest MSE occurs tends to 0.

For unequal component means a similar result
holds. Figure 3 shows the bias as a function of p for
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Figure 4. Ratio of \/MSE (ji,|p)/MSE (ji,1p=0)
for Various Sample Sizesnandfor A, =1,2, =15.

various sample sizes when 4, =10 and 1, =15
Figure 4 depicts the ratio

VMSE (i, | p)/MSE (i, | p = 0)

as a function of p for various sample sizes when 4, =
l. Az = 1.5.

5. BIAS OF THE PRODUCT
LIMIT ESTIMATOR

A second approach to the problem of estimating
component parameters is via the nonparametric esti-
mator proposed by Kaplan and Meier (1958). Investi-
gators who routinely use nonparametric techniques
may take this approach in hopes of obtaining esti-
mators that are robust with respect to the assumption
of exponentiality. The purpose of this section is to
show that such estimators are not necessarily robust
with respect to the assumption of independence when
the marginals are, in fact, exponential.

The product limit estimator, assuming independent
risks, is constructed as follows. As before, suppose n
systems are put on test at time 0 and »; systems fail
owing to failure of component i. Let X1y, ...y Xyuy
denote the ordered times at which these n; events
occur, and let r;,, ..., r,,, be the ranks of those ordered
survival times among all n ordered lifetimes. The com-
ponent reliability for the ith component at time x may
now be estimated by the product of the individual

TECHNOMETRICS «. VOL. 26, NO. 3, AUGUST 1984
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conditional survival probabilitics, namely, by
Fix)=1 if x<xy,
Hi. x)

n—ry

= n-—r1+l' X > Xy
il i

where j(i, x) is the largest value of j for which x, , < x.
A special note is needed to cover the case in which
X, is DOt the largest observed death. To avoid this
problem, we shall define F(x) =0 for x greater than
the largest observed failure time.

If the component lifetimes in fact follow the
Gumbel bivariate exponential, we can see that the
Kaplan-Meier estimator is not consistent. For i = 1,
the Kaplan-Meier estimator is not estimating F,(z),
but, rather, another survival function, H,(t), given by

2,0
*[L+4p(1 — e 131 ~2e 1]
= €Xp {-ll J; [l +4p(l _e—hyxl —C-“:')] du},
t>0.  (5.1)
Note thatif 4, = 1, = ¢,(5.1)is simplified to
A () =e *[1 +4p(1 — e *P]3, (52

which is increasing in p. Similarly, F,(¢) is actually
estimating A (), which is defined analogously.
Measures of the error in estimating F(r) by Fi(1) are
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Figure 5. Bias of Kaplan-Meier Estimate, F ().
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]
the bias and MSE of F (1) computed under the depen- s .
dence model. Under this madel. the Kaplan-Meier ° / ©
B estimator is equivalent to the estimator one would /7 <
v obtain based on n observations from an independent EJ /, ’
system with component survival distributions H,
’ given by (5.1) or, if i, = 4,, by (5.2). Hence from -
g Kaplan and Meier (1958), the variance of Fi(z) is given ,',31 & e eare
. . (] ‘dH‘(u)| - ® 0P, o, I
V(F (1) = =L . %
: (Fdy = A7 | T 53) ped
Thus from (5.1) and (5.2), the bias and MSE of F(r) are .23
- BF@ =A0-Fo. 120, (4 0
; g and 2_.
MSE (F(t)) = (H (1) ~ F()* <
L]
m? 1dA )] e
+ A0 P yER t>0. (55 3
. The estimator is not consistent, since B(F{t)) is inde- -
] r pendent of n and not necessarily zero. Also, MSE et
(Fi(1)) consists of a factor that depends only on the
model error and is free of sample size and of a term 8
that tends to(?asntends to infinity. Q¥ s o0 so Fos s oo
Note that in the case of equal component lifetime Ving
distnibutions, 4, = 1, = ¢, the bias determined from Figure 7. MSE of Kaplan-Meier Estimate, F ().
i l (5.2) and (5.4) simplifies to iy=1,7,=15,n=50.

BF () = e~ *{[1 + 41 — e~ *)}* — 1}. (5.6)
In the general case, the integral in (5.1) needs to be
evaluated numerically. The bias of the Kaplan-Meier
estimator was calculated for various values of i; and
p- A representative piot of the bias appears in Figure
S,where i, = 1,J; = 1.5, and | p} = 0, .125, 250. It is
apparent that the bias is largest for values of t in the

17

+ -
B
[J

:';L « neighborhood of an interval that captures the mean
o component lifetimes. The absolute value of the bias
| ranges from 0 to .11 in this example.
: et MSE (£(1)) was calculated for various values of 4,
P n, and p. Its magnitude is typified in Figures 6 and 7,
2| where 4, =1, /i, = 1.5, and n = 10, 50, respectively.
Vo For 4, =1, A, = 1.5, and n = o, MSE (F(1)) may be
obtained by squaring (5.4) or by squaring the ordinate A
5 values in Figure 5. The MSE of the Kaplan-Meier R
_ <] A estimator may be quite large for small sample size n S
) and moderately Jarge for “large™ p. the former being a -
| more crucial factor than the latter. 0 1
6. SUMMARY R
o1 The results presented here show that for the ’
' Gumbel model, one may be misled by falsely as- K
.' z g suming indepeadence of component lifetimes in a 1
; Vov 0.5 T.00 1,50 200 250 3.00 series system. In modeling system reliability based on
o Tine complete information about two marginal component
v Figure 6. MSE of Kaplan-Meier Estimate, F (t), life distributions, effects of erroneously assuming inde-
- =1, =15n=10. pendence of component lifetimes is most pronounced
:. TECHNOMETRICS ¢, VOL 26 NO 3. AUGUST 1984
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for system reliabilities smaller than .75. For system
reliabilities larger than .90, this effect is too small to be
of practical interest. The effects of a departure from
independence on the Mann-Grubbs bounds for small
sample sizes seems to be negligible for confidence
levels greater than .90. But for either large sample
sizes or smaller confidence levels, one may be appre-
ciably misled.

For the dual problem of estimating component re-
liability based on data from a series system, it appears
that departures from independence are of a greater
consequence, Both parametric and nonparametric es-
timators of relevant component parameters are incon-
sistent. Although under independence, the bias of the
estimators of interest clouds the issues, it is clear that
for larger negative correlations these estimators tend
to underestimate the parameter, whercas for large
positive correlations, the reverse is true.

ACKNOWLEDGMENTS

The authors would like to thank the editor and the
referees for their constructive comments.

This work was supported by the Air Force Office of
Scientific Research under Contract AFOSR-82-0307
and the Graduate School of the Ohio State Univer-
sity.

[Received June 1982. Revised December 1983.]

REFERENCES

BARLOW, R. E, and PROSCHAN, F.(1975), Statistical Theory of
Reliability and Life Testing, New York: Holt, Rinchart, and
Winston.

BASU, A. P. (198]), “Identifiability Problems in the Theory of
Competing and Complementary Risks—A Survey,” in Statistical
Distribution in Scientific Work, eds. Taillie, Patil, and Baldesaari,
Dorerecht, Holland: Reide! Publishing Co., 335-348.

BIRNBAUM, Z. W. (1979), On the Mathematics of Competing
Risks, US. Dept. of HEW Publication 79-1351.

BOARDMAN, T. 1, and KENDALL, P. J. (1970), “Estimation in
Compound Exponential Failure Models,” Technometrics, 12,
891-900.

CHAO. ANNE (1981), “Approximate Mean Squared Errors of

Estimators of Rehability for k-out-of-m Systems in the Indepen-
dent Exponential Case.” Journal of the dmencan Statistical A«
sociation, 76.720-724.

EASTERLING. R. G. (1980). Review of On the Mathematics of
Competing Risks, by Z. W. Birnhaum. Techmmetrics, 22 131-
132,

GUMBEL, E. J. (1960), “Bivariate Exponential Distributions.”
Journal of the American Statistical Assocation, §§, 698-707.

KALBFLEISCH. J. D.. and PRENTICE, R. L. (19801 The S:cris-
tical Analysis of Failure Time Data, New York ' John Wiicy.

KAPLAN, E. L. and MEIER, P. (1958), “Nonparametric Esti-
mation From Incomplete Observations,” Journal of the American
Siatistical Association, 53, 457-481.

LAGAKOS, S. W. (1979), “General Right Censoring and Its
Impact on the Analysis of Survival Data,” Biometrics, 35, 139-
156.

LAGAKOS, S. W, and WILLIAMS, J. S. (1978). "Models for
Censored Survival Analysis: A Cone Class of Vanable-Sum
Models,” Biomerrika, 65, 181-189.

LAWLESS. J. F.(1982), Statistical Madels and Methods for Lifetime
Data, New York: John Wiley.

MANN, N. R (1974), “Simplified Expressions (or Obtaining Ap-
proximately Optimum System-Reliability Confidence Bounds
From Exponential Subsystem Data,” Journal of the American
Statistical Association, 69, 492-495.

MANN, N. R, and GRUBBS, F. E. (1974), “Approximately Opti-
mum Confidence Bounds for System Reliability Based on Com-
ponent Test Data,” Technometrics, 16, 335-347.

MANN, N. R, SCHAFER, R. E., and SINGPURWALLA. N. D.
(1974), Methods for the Statistical Analysis of Reliability and Life
Dara, New York: John Wiley.

MENDENHALL, W, and LEHMAN, E. H,, J&. (1960). “"An Ap-
proximation to the Negative Moments of the Positive Binomial
Useful in Life Testing,” Technometrics, 2, 227-242.

MIYAMURA. T. (1982), “Estimating Component Failure Rates
From Combined Component and Systems Datz Eaxponentizlly
Distnibuted Component Lifetimes.” Technomerrics. 24, 313-318.

MOESCHBERGER, M. L and DAVID, H. A. (1971), “Life Tests
Under Competing Causes of Failure and the Theory of Com-
peting Risks,” Biometrics, 27,909-933.

PETERSON, A. V_, Jr. (1976). “Bounds for a Joint Distribution
Functiona With Fixed Sub-Distribution Functions: Application
to Competing Risks,” Proceedings of the National Academy of
Sciences, 73, 11-13,

TSIATIS, A (1975), “A Nonidentifiability Aspect of the Problem of
Competing Risks,” Proceedings of the National Academy of Sci-
ences, 72,20-22.

WILLIAMS, J. S, and LAGAKOS, S. W. (1977), “Models (or
Censored Survival Analysis: Constant-Sum and Vanable-Sum
Modcls.” Biometrika, 64,215-224.

LT e e te e T e e T N T e e . ® et et .
DA VT VR PR A WA DA P v W W L RO YR P T PO YLD vl

T e T ~.'_\‘_\‘.~.:_-.:.\ e T

4
]
S
. -
]
S
“N
- 4
. e
I
4
o
¢
—
Ut

Lo e
P

-
LN VL)




Lol ok am awul e

PP IO )

AR S

Lo Jiiie"

Appendix B




L
A TEST FOR INDEPENDENCE BASTS ON DATA ;
FROM A BIVARIATE SEXIES SYSTEM ?:"3;'_:_31?

John P. Klein

Department of Statistics T
The Chio State University T
Columbus, Chio 43210 -

30 September, 1984

Annual Report for Period 1 October 1983 - :3 September, 1984

AFOSR -~ NM

N
Building 410 __1
Bolling Air Force Base -
Washington, D. C. 20332 T

AFOSR-PKZ PR
Building 410 b
Bolling Air Force Base R
Washington, D. C. 20332 o

ML

Tt =

~

g -

..
q
-~

. L )
L) I-\'.‘,..‘-‘." RSN




.........................
...........................................

e A TEST FOR INDEPENDENCE BASED ON DATA
FROM A BIVARIATE SSRITS SYSTEA

k- g -

JOHN P. XLEIN

o Department of Statistics
{ The Ohio State University : '

. Columbus, Onio 43210 -

- . - “«pma s - PR ——
l - AMS 198C Subject Classifications. rrimavw £ZG10, Secorncary 62N0S. )

Key Words and Phrases: Test for Inceperdence, Series Systems, Identifibility. N

- e
N

S Technical Repert Ne. 285
wa Department of Statistics )
The Ohio State University , Lo

Columbus, Ohio 43210 e

June l:z:-

)y v
o
1

----- S T T T U R S - . - et et et e e e et T IS P Y
PRI .'.',"..'.'.. '_.\ ______ REIAL IR P “a . e - LIRS . _.- e e e e e e e
PREIAEIE AT NSl AN N 7. Sl UGN o e . P PPN R A R T T PP Y




Abstract ' \

The problem of testing for independence of the component lifetimes

when the components are linked in series is considered. To avoid the o
problem of nonidentifiability the marginal component lifetimes are assumed ) ’
to be known. In this setting a modified version of Kendali's Tau is
proposed. This test statistic is obtained by replacing those component
lifetimes which cannot be cbserved, due to systen failure, by condizticnal -_—

probabilities computed under independence. A small scale sim:lation study
of the power of this test shows the test has reasonzble power for relatively

small sample sizes. . .-

Key Words: Series Systems; Test for Independence; Kendall's Tau; '_ -...-_
Exponential Distribution. AN




'y 1. DEPENDENT SYSTEMS 'y =

A common assumption made in modeling series systems is that the l-':j:'.:ijlﬁ

conponent lifetimes are statistically independent. This assumption is
also routinely made in analyzing data collected from series systems.
Recently, Klein and Moeschberger (1983) and Moeschberger and Klein (198u)
have shown that one may be appreciably misled by this independence
assumption for certain bivariate expcnential systems.

To illustrate the effects of this independence assumption consider
the following two models for the joint survival function of the component
lifetimes (X,Y). The first model, due to Oakes (1982) has joint survival

function

° °-1 —%e-u 3
Hix,y) = 2(Xx, Yy) = [{l } + {1 I'- 1} ;8> 1 (1.1)
F(x) @(y)]

where F(-), G(*) are the marginal survival functions of X and Y respectively.
This distribution has a coefficient of concordance t = (8-1)/(8+1) and
8 = 1 corresponds to independent component failure times. If A(x|Y=y) and
A(x|¥>y) denote the conditional hazard functions for the conditional
distributions of X given Y = y and given Y > y, respectively then » '
Alx|¥=y) = 0 Ax|Y>y).

A second model, due to Gumbel (1960), has joint survival function :

H(x,y) = f(x)@(y)[h&(l—?(x))(l-C_(y))], -l<ac<l. (1.2) '

This model has coefficient of concordance t = 2 o /9 which, unlike the
Oakes model, may be both positive and negative.

To illustrate the importance of the independence assumption in .
th

modeling the system life consider figures 1 and 2 where the Qsth and 99
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percentile of system life is plotted for the T« models with exponential
marginals. Here in all cases the first compcrent has unit mean life. For
the Gumbel model the true percentile ranges from 80% to 115% of the
percentile computed under independence, while in the Oz2%zs model the true
percentile can be as much as twice as big as <ne percentile camputed under
independence when X? = Al and as much as 1.5 —ime as big vhen kz = 2.

Since one may be appreciably misled by errcneously zssuming independent
camponent lifetimes it is desirable to test this hypothesis based on data
fram series systems. However, if no assumptions about the underlying
distribution of the component lifetimes is maZe such a t2st is impossible
due to the identifiability problem (see, e.g. Tsiatis (2378), Miller (1977),
Basu and Klein (1982)). This is, given any set of obser:able information
(such as system life, crude system 1ife, etc.} collected Zrom 2 series
system with dependent component lifetimes, thrare exists z series system
with independent component lifetimes with ths same obserable information
(see langberg, Proschan and Quinzi (1981)). =owever, tris comparable
system of independent random variables need r.st have the same marginal
camponent life distributions as the dependent structure. In particular, the
marginal distributions of the two systems are the same cnly for the class of
constant sum models defined by Williams and legakos (1€77).

In the next section a modificaticn of Kendall's (1833) test for
independence is proposed. This test assumes zhat the mzrgzinal component
life distributions are completely specified. This information could be
obtained by testing each camponent seperatel:’, as is ofzen done in the
development stages of system design (see. e.g. Easterli-: and Prairie

(1971), Mastran (1976), or Miyamura (1982)). In sectic- 3 a simulation

et

la
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study compares the power of this test tc the parametric tests based on

Oakes and Gumbel models.

2. THE TEST PROCEDURE

Suppose that n two compenent series systems are put on test. Let
Xi’ Yi denote the potential (unobservable) failure times of the first and
second components of the ;th system. We are not allowed to observe

(Xi’ Yi) directly, but instead we observe Ti = ..:ln(Xi, Yi)-, the system

failure time and 1 if Ti Xi , the cause of the system failure.

I. =
1l .
0 if Ti

Y5

Also suppose that the marginal survival functions of Xi and Yi’ F(x) = P(Xi>x)

and G(y) = P(Y.>y), i =1,...,n are known.

If we could observe both Xi and Yi then a test of independence, due
to Kendall (1938), is to count the number of ccnoordant pairs and the number
of discordant pairs. A pair (xi, Yi)’ (Xj, Yj) is concordant if )(i - Xj
and Y; ~ Y. have the same sign and is discordant if these differences have
different signs. The test statistic is then the number of concordant
pairs minus the number of discordant pairs.

If the data comes from a series system then only Ti’ I i is observed.
Suppose we consider a pair (T;, I,), (T;, L) with Ty < Ty. IfI; = 1 and
Ij = 1 then we know that XiA= Ti < Xj = Tj’ and )(i < Yi’ Xj < Yj‘ This
pair would be concordant, regardless of the value of le, if '1‘i < Yi < ’I‘j.
If Yi > Tj concordance or discorwdanc;e depends cn the value of Yj‘ Under the
null hypothesis of independence, the conditionazl probability that the
pair is concordant is [&(T;) - 'G'(Tj)]/ﬁ('l‘i)' = 2(T; <Y< T | Y >T,;) since
average concordance cver the range Y > 'i‘j is C. When Ii = 1 and Ij =0
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would be concordant and if Y, > 'I‘j the pair w::id be discordant, whatever
the value of X 3° Under independence the ccncdi-ional probabilities of these
two events are [§(Ti) - §(Tj)]/§(Ti) and 5('1‘5} 'fCI'i), respectively. Should
I;=0 similar probabilities, inwolving F, cc._d be obtained. This
motivation suggests the following score functi-n for T; < T;

3
( [EKTE)—G(Tj)]/G(Ti) if I, = Ij =1
ETYTi)-F(Tj)J/F(Ti) if I, = Ij =0
&(T: ,I.,T:,I.) = _ (2.1)
7127377 [B(T)-2B(THVE(E,) if I, =1, I, =0
3 i i 3
T -2F F(z.) i = =
\ [E(T,) 2F(T5)]/r(-i, if 1, = 0, Ij 1
ard similarly for T, > Tj‘
The modified version of Kendall's test stztistic is
T= ) ¢(Ti,Ii,Ié,If)'(2). (2.2)

1<i<j<n
To find the moments of ?, under indepenziznce, consider the pairs
. (Tl’ Il)) (Tz, 12)0 I-Et Al = {Tl < Tz, Il = :2 = l},
A, = {Tl <Ty, I, =1, I, = 0}, Ay = (Tl <T,,I,=0,1,= 0} and
A = {Tl <Ty, I, =0, I, = 1}. In terms of —he unobservable component
lifetimes, (Xi, Yi)’ A1 = {X1 < %55 )(.l < Yl, }(2 < Yz},
By = (X < Yy X < g, Yy < Xphy Ay = Y < ¥y Yy <Xy, g < Xhy and
Ay = Yy <X, ¥ <X, Xy < Y,}. Since, by swwetry T; is equally likely

to be either smaller or larger than T, we havz
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G(x )-G(xz)

!
G(x

- 1 _ . i
' n .3 E{(T ’Il’TZ’I'Z)) = IA]_ ] dr(xl)cF(xz)dG(yl)dG(yz)
X

[
T G(xl) 2G(y2)
- + I dF(xl)dF(xz)dG(yl)dG(yz)
ol A G(x,)
s 2 X
- + dF(xl)dF(xz)dG(yl)dG(yz)
o + —_— dF(xl)dF(xz)dG(yl)dG(yz).
': - Au F(yl)
=Jy Jy * Jy Jy (say).
_ . Now, consider
" U

Jp + iy = r {[ (G(x)-G(y) IG(y)dF(y) + rtﬁ(x)—zé'(y)]?’(y)de(y)}dr(x). (2.1
-0 x x

Integrating the first inner integral in (2.%) by parts yields the negative

l -of the second inter integral so that Jl +d, = 0. Similar computaticns show

B | R

that Jy + J, = 0. Thus EC(Ty, Iy Tps I,)) and hence E(T) are both O.

- By similar computations one can show that
| ﬂ a(n-1)V(T) = %I Bx)2aF(x) + % r T(x) 2da(x)
P | 22 -

-y [ B(x) r F(y)B(y) *d6(y)dF(x)
> A
T " fooY a)Fs)?
- -4 [ F(x) J G(y)F(y) “dF(y)d6(x)
- x
: L e o) (2 - 2[ FOOGEIAEX) + Gx)) (2.
L - 2r FO 2600 2a(E ) + 6(x)
i . 3[ F(x) 2G(x)dF(x) + 3r F)C(0)2d6(x) }, where F(x) = 1 - T(x) BN
: 1 - and G(x) = 1 - G(x). ___4
: )
.f ‘“ :.1
! =
e L gl e e B g e L LT e ROy 3
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The asymptotic normality of T follows v the results c¢f Hoeffding (19u8).
Hence, a test of independence versus de>endence rejects if if'/ v/.'(T)l is
greater than the appropriate percentags point of a standard normal random
variable. A test of independence versus positive dependence rejects if
/AT is too large.

The variance of T (2.5) can be exoressed explicitly in several cases.

Case 1. TF(x) = G(x). In this case (2.5) reduces toc

~y o 4n+7 a
v(t) = m . (2.3)

Case 2. (Lehmann structure) F(x) = G(x)*. Here (.3) reiuces o

D+ S
Case 3. (X, Y exponential), F(X) = e’kx, Gly) = e'ey, then (2.5)
reduces to
616038 5 + n(SrZezieresT)] (2.%)

=DV = 338y 0w 36) (2N 38) (726

When the true values of F, G are misspecified trzn E(t) s not zero.

. e » - - - ~ . .-2 -
If the true compcnent lifetime distrib:tions ere F, T but 7:"“, &” are used in

fornula (2.3) then one can show that, under independence,

E(T) = 2(1-3)[ G'(x)l"B J F(y)G'(y)BdG(y)iP(x)
- * (2.9)

+ 2(1-a)[ )™ I S(NFY)®ar(y)a3(x), o, 8 > 0.
<0 *

(6+1)

If F(-) = G(-) then E(T) = B8-1 + a-1
: TBF2Y  T(A2)
1f F(x) = §(x)e then E(T) = @ a-2 + 8-1 )
RS €I§¥T§

Similar expressions can be obtained for the null var:ianca oo <.
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3. SIMULATION STUDY

s To study the effectiveness of the m=iifiec Kendall's t described in
section 2 a simulation study was conduczzi. The study was performed by
generating 1000 samples of n = 20 or 4G szries systems with exponentially

- distributed component life times, F(x) = =™~ and 8(y) = e-)\2y, Ay =1, 2.
Both the Oakes joint distribution (1.1) z=Z the bivariate Gunbel distribution
(1.2) were used. The bivariate observe=izns from the Oakes distribution
were generated using the technique descri>sd in section 2 of that paper.

To generate Gumbel random variables wit: marginal survival functions

F(x), G(y) 1let U, U, be independent uniicrm random deviates. Note that

Flx|y) = PGox] Y=y) = FGO(L3a-2T() - aFx)%(1-28(y)). (3.1)
Ef et U; = G(y) and U, = F(xy) = FGI[1+a~22Y,] - a?(x)zcl-zul).
Solving this equation for F(x) yields
K TG T U s Qa9 ard-ip? ¢ et 6.
2&(1—2U1) ’ Ul Z1/2
which is the root which lies inthe intervzl [0,1]1. If Uy = 1/2 then U = U,.
a The pair (X, ¥) is then found by X = ?'1(3‘-"), Y = E'I(Ul).
| For the purpose of camparison the parametric tests for independence,
based on the efficient scores statistics, for the Gumbel and Oakes model
— were obtained. Consider first the Gumbel model (1.2). Using the notation

in section 2, the observable crude densizy for I =1 is

-d P(T>t,I-1) = ql(t) = ()3 L) [1+: (-F(®)-2G(t) + F()G(tNH]
where f(t) = -d F(t), and a similar exgression for q,(t) when I =0. Based
dat T

PN

lj:.' on a sample of n series systems the 1likzs2in function is ] \i
” n I. 1-1, R
. L) « T gq(ts) 2 2 (2) 3. (3.3) S
j=1 1°7) 273 ]
[ |
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’ n n
i %= < ]2_; Li(AITj) + (l-Ij)}\?Tj + }::

.“2 N 0
< ; "1*2‘3'“1”3"%’)' Mt

(2n) lxz)l/z

which is approximately standard normal for large n when 6 = 1.

E The results of this study are reportey i table 1. From this table -
it seems like the modified T test has reasonably good power when compared »
to the parametric tests, although comparison with the Oakes score test 1is

z hard since rhe significance level of that test 1s inflated. Also the test

based on the Gumbel scores has comparable power when the data is from the |

Oakes model. A test for normality done on the samples where the components

were independent accepted the normality assumption for the modified 1 test.

Table 2 reports the observed number of rejections when the component

: parameters are estimated based on independent samples of size 50 for each

i component. A .05 significance level was used. Here, when AL = A, all tests 3 -
have inflated levels. When M 7 A, the tests are conservative. All tests -
ndv.e coinparable power when Ay = A,, however the modified T test has signi-

- ficantly higher power when AR .

. In addition to the power of our modified test the E(?) was estimated

for each sample. Except in the independence case the simulation showed

N

that E(1) = .351, suggesting T is of limited use as a point estimator of T.
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TABLE ] fotimited Vower Using True Pacameter Valae ‘
i Bazed re 1000 Replications L]
' )
MODIFIED 1 OAKES SCORE SUMBEL SCORE -]
MODEL n T 4z.05 27.025  @=.05 =.025  u=.05 a=.025 X
Independent ¢ ,=1) 20 7 50 25 71+ 52+ 58 37 z'._“-_'-"-:::'i
Independent (+,71) 40 9 42 21 57 34 54 36 4
Independent (A2=2) 20 0 53 25 Tu+ 52+ 62 3u
_ Independent (X 2=‘2) 50 0 5% 32 Tu+ ug+ 69 37 '
- Sumbel (A,71) 20 .12% 99 55 115 88 133 78 ) |
Gumbel (A,=1) 40 .125 158 36 15¢  12u 192 124 [
Gumbel (1,72) 20 .12% 119 74 12¢ 88 Ll 100
Gumbel (X,=2) 40 .125 158 88 146 111 176 116
r Gumbel (1,=1) 20 .222 182 117 172 130 245 175
Gumbel (A,=1) 4o .222 283 199 233 179 323 257
Gumbel (1,=2) 20 .222 188 110 160 130 205 143
Gumbel (1,=2) o .222 273 181 221 159 316 237
K Oakes (A,=1) 20 125 170 11 236 202 184 137
Oakes (A,=1) wo  .125 22t 15u 327 273 247 185
Oakes (1,2) 20 .12¢ 166 101 231 207 179 125
Oakes (\,32) 4o  .125 228 1u8 312 253 2u8 166
Oakes (A1) 20 .25 316 243 421 377 379 295
. Oakes (A,=z1) 40 .25 ugs 39y 614 551 510 uu3
) Oakes (x;::) 20 .25 3 223 386 335 /L 273
Oakes (A,32) 4G .25 513 338 555 483 522 07
Oakes (A;=l) 200 .50 638 535 70u 670 680 606
Oakes ( h=1) «¢ .50 880 802 303 875 8gl 851 o |
Oakes ( 4,=2) 20 .90 857 589 615 5u7 874 593 C ]
Qakes (xgzz) 40 .50 29y 823 815 772 §73 820 o
Oakes (3,=1) 20 .75 799 722 803 763 gsg 795
Oakes (A1) wo .75 373 u6 383 968 925 900 > |
Dakes (x,_,=2) 20 .75 899 w7 799 631 823 763 , ;
Cakes (A\=2) g .75 395 989 22u 83u 385 961 o
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TARLE Pt imatesd oo Chuingn e Dot S
ﬁ faed o LOUD Repdicat Do

Y

- MODIFIED T _OAKES SCORE GUMBEL. SCORE

MODEL n t @z.05 @=.025 ~=.05 a=.025 .05 a=.025
Independent G =1) 20 0 50 25 71+ 52+ 58 37 l
Independent ()\2=1) 40 ) L2 21 57 34 Sy 36
Independent (A,=2) 20 0 53 25 Tu+ 52+ 62 3u
Independent (},=2) U0 0 55 32 Tu+ ug+ 69 37 _
Gumbel (x,=1) 20 125 99 55 115 88 133 78 °
Gumbel (X,=1) 40 .128 158 36 159 12u 192 124
Gumbel (1,72) 20 125 119 7y 128 88 141 100
Gumbel (A,=2) 40 .125 158 88 146 111 176 116
Gumbel (1,=1) 20 - .222 182 117 172 130 2u5 175 .
Gumbe1 §x2=1) 40 .222 283 199 239 179 323 257 .
Gumbel (A,=2) 20 .222 188 110 160 130 205 143
Gumbel (1,=2) 40 .222 278 181 221 159 316 237 :
Oakes (1,=1) 20 .125 170 114 236 202 184 137 o
Oakes (A,=1) 40 .125 224 154 327 273 267 185 L
Oakes (X,=2) 20 2125 166 101 231 207 179 125 S
Oakes (A,=2) 40 .125 228 148 313 253 2u8 166 ','.‘:jli.-f."
Oakes (A,=1) 20 .25 318 2u3 421 377 379 295 e
Oakes (A1) ug .25 484 39y 61u 551 510 uu3 ’
Oakes (X,32) 20 .25 334 223 386 335 354 273
Oakes (A,=2) 40 .25 513 338 555 483 522 407
Oakes (A\,=1) 20 .50 638 535 704 670 680 606
T Oakes (A,=1) 40 .50 880 802 903 875 881 851 ’
- Oakes ( %,=2) 20 .50 657 589 615 547 674 593
- - Oakes (A)=2) "y .50 89u 823 816 772 873 820
. L Oakes (A,=1) 20 .75 799 722 803 763 858 795
E Oakes (X)=1) ug .75 973 u6 983 968 925 900 ’
Oakes (»\2=2) 20 .75 899 847 699 631 823 763 :
Oakes (A,2) 4o .75 395 989 924 88UY 985 961
' . t:’ -
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TABLE 2 Estimated Power Using Dotlmated Darameter Values B
and 2.06 Significance level i -4
Modified 1 Uakes Score Gumbel Score _ i
Gumbel Score o]
toLE “oT MEE AR M M 4L A2 o ?-;
Independent 20 83 18 96 1 89 O
L Independent 40 6u 17 33 1 81 R
Gumbel 20 .125 136 42 141 3 159 4
b Gumbel 40 125 214 30 200 3 242 4 ]
Gumbel 20 .22 209 68 201 6 255 10
o Gumbel 40 .22 331 62 276 10 360 9
? Oakes 26 .125 202 48 263 40 211
r l‘. Oakes 40 .125 276 5y 354 13 284 1
Oakes 20 .25 327 146 430 55 388 29 L
Oakes 40 .25 513 156 628 u8 542 20 4
Oakes 20 .50 638 400 699 93 655 92
Oakes 40 .50 858 558 827 99 865 102
)
Oakes 20 .75 781 737 793 76 828 8y
Cakes 4o .75 956 916 u7 112 962 138
R
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BOUNDS ON NET SURVIVAL PROBABILITIES

FOR DEPENDENT COMPETING RISKS

by
John P, Klein and M. L. Moeschberger
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SUMMARY

Improved bounds on the marginal survival function based on data from a

b'» .
o competing risk experiment are obtained. These bounds are obtained by specifying

These bounds are tighter than

a range of possible concordances for the risks.

those of Peterson (1976). A comparison to other existing bounds is also made. —

fj - Key Words: Competing Risks, Product Limit Estimator, Net Survival Function,

- Coefficient of Concordance. e
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I. INTRODUCTION

A common problem in survival analysis is to estimate the marginal
survival function of the time, X, until some event such as remission,
component failure, or death due to a specific cause occurs. Often obser-
vation of this main event of interest is impossible due to the occurrence
of a competing risk at some time Y < X, such as censoring, failure of a
different component in a series system, or death from some cause not
related to the study. Standard statistical methods, which assume these
competing risks are independent, estimate the marginal survival function
by the Product Limit Estimator of Kaplan and Meier (1958). This estimator
has been shown to be consistent for the marginal survival function by
Langberg, Proschan and Quinzi (1981) when the risks follow a comnstant
sum model defined by Williams and Lagakos (1977). When the risks are
not in the class of constant sum models, the Product Limit Estimator
is inconsistent and, in such cases, the investigator may be appreciably

misled by assuming independence.

L P,
DL RN I e . . - .
R S S S T L T R S R

'~ .
. . I LU P R
LTS P A S O A A A AR

ke st s




s . ~._ KSLRAN) «'_-.', ., RN e ORI L -.' O R P TR

nLn . 4"

In the competing risks framework we observe T = minimum(X,Y) and
I = (X < Y) where X(+) denotes the indicator function. Tsiatis (1975)
and others have shown that the pair (T,I) provides insufficient information
to determine the joint distribution of X and Y. That is, there exists both
an independent and a dependent model for (X,Y) which produces the same
joint distribution for (T,I). However, these '"equivalent" independent
and dependent joint distributions may have quite different marginal
distributions. Also, due to this identifiability problem, there may be
several dependent models with different marginal structures which will
yield the same observable information, (T,I). In light of the consequences
of the untestable independence assumption in using the Product Limit
estimator to estimate the marginal survival functiom of X, it is important
to have bounds on this function based on the observable random variables
(T,I) and some assumptions on the joint behavior of X and Y.

Peterson (1976) has obtained general bounds on the marginal survival
function of X, S(x), based on the estimable joint distribution of (T,I).
Let Ql(x) = P(T >x, I =1), and Qz(x) = P(T >x, I = 0 ) be the crude
survival functions of T. His bound, obtained from the limits on the joint

distribution of (X, Y) obtained by Fréchet (1951), is

Q(x) + Qp(x) < S(x) <.Q(x) + (0. (1.1

Since these bounds allow br any dependence structure, they can be very wide
and provide little useful information to an investigator.
Fisher and Kanarek (1974) have obtained tighter bounds on S(x) in

terms of a dependence measure a. Their model assumes that simultaneous
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to the occurrence of Y an event occurs which either stretches or contracts ij_ﬁi
the remaining life of X by an amount associated with a. That is, ‘5313:
P(X > x|Y =y < x) =P(X>y +al(x-y)|]Y >y + a(x-y)). A large a, for ':1f 5
example, implies that a small survival after censoring is the same as g-times ; -
as much survival if censoring was not present. They show that if o is assumed
known, then the marginal survival function can be estimated from the
observable information. Also these estimates, §a(x),are decreasing in «a. 6 .f
For their bounds, the investigator specifies a range of possible values i

ap < a<a, so that 5 (x) < S(x) < SaL(x).
u

Recently, Slud and Rubenstein (1983), have proposed general bounds.

They show that knowledge of the function

P(x < X < x +8]¥ > x, Y < x)

p(x)=é_’:')‘ P(x < X < x #6|X > x, Y > x)

along with the observable information (T,I) is sufficient to uniquely

determine the marginal distribution of X. These estimates §o(c) are

decreasing functions of p for fixed x. Their bounds are obtained by

specifying a range of possible values pl(x) < a(x) < pz(x) so that if
p(x) is the true function §02(x) < 8(x) < §pl(x).

In this paper we obtain different bounds on the marginal survival

function by assuming a particular dependence structure on X and Y. These

bounds are functions of the observables (T,I) and a familiar dependence‘

measure, the concordance probability between X and Y. In Section 2 we

describe this model ian detail. In Section 3 we derive the bounds and show

consistency when the dependence parameter is known. In section 4 these

bounds are compared to those obtained by Peterson, Fisher and Kanarek, oL

and Slud and Rubenstein.
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. II. THE MODEL
The dependence structure we shall employ to model the joint survival
was first introduced by Clayton (1978) to model association in bivariate
lifetables and, later, by Oakes (1982) to model bivariate survival data. v
Let S(x) = P(X > x), R(y) = P(Y > y),with §(0) = R(0) = 1, be the
continuous univariate survival functions of the death and censoring times,
EI respectively. For 8 > 1 define F(x,y) = P(X > x, Y > y) by

l }9—1

F(x,y) = Hgeg )~/ (6-1) (2.1)

1 8-1
Ry

This joint distribution has marginals S and R. As 0+1, then (2.1) reduces
to the joint distribution with independent marginals. For 6-+w,F(x,y) +

il min(S(x), R(y)) the bivariate distribution with maximal positive association

1ol

for these marginals. The probability of concordance is 6/(8 + 1) so that
Kendall's (1962) coefficient of concordance is T = (8 - 1)/(8 + 1) which
spans the range 0 to 1.

This model has a nice physical interpretation in terms of the

functions A(x|Y = y) and A(x|Y > y), the hazard functions of X given Y =y

and X given Y > y, respectively. From (2.1) one can show that

Ax[Y = y) = OA(x[Y > y)

or

) P(X > x]Y =y) =[Px > x|y > y)]i0 ' (2.2) -

For 9 >1 the hazard rate of survival if censoring occurs at time y is

] times the hazard rate of survival if censoring does not occur at

time y. This implies that the hazard rate after censoring occurs is

e
........
......

-----
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ii accelerated by a factor of 8 over the hazard rate if censoring had not
occurred. Also when 8 =1, (2.2), reduces to the condition required by
Williams and Lagakos (1977) for a model to be constant sum and hence for

the usual product limit estimator of S(t) to be consistent (See Basu and

[ ]
Klein (1982) for details).

Oakes (1982) also shows that (2.1) can be obtained from the following
random effects model. Let S*(x) = exp (- IET%T]G-I +1} and let R*(y) be
similarly defined. Let W have a gamma distribution with density

L
- gﬁqyxwe-l e ™ and conditional on W = w let X,Y be independent with
!

survival functions {§Xx)}" and {R*(y)}". Then, unconditionally, X,Y have
the joint survival function F(x,y) given by (2.1).

For fixed marginals S and R the joint probability density function,
f(x,y), can be shown to be totally positive of order 2 for all 6 > 1.
This implies that (X,Y) are positive quadrant dependent. In particular,
one can show that for S,R fixed the family of distributions
F = {F(x,y): 6 > 1} is increasing positive quadrant dependent in 8 as

defined by Ahmed, et al. (1979).
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II1. BOUNDS ON MARGINAL SURVIVAL
Suppose that X and Y have the joint distribution (2.1) and let

T = min (X,Y), then the survival function of T is

1
F(T) = [lg(—%le'l + [R—(i—)-]e'1 - 1) B-1 (3.1)

ql(t) T P(T < t, X < Y), is given by

q (0 = 2 (re)f, (3.2)
s7(t)
where s(t) = =-dS(t)/dt.
Now consider the differential equation
%ty = f
s(£)/8°(t) = q (£) F(c) (3.3)
and suppose 8 is known. Then the solution of (3.3) for S(t) is
1
t  q,(u) o
Sg(t) = [1 +(6-1) 1 ] “0-1) yr g1
o (reuf
(3.4)
t (u)
= exp( -~ é F(u) du) ife=1.

The functions F(+) and ql(') are directly estimable from the data one
sees in a competing risks experiment. Let Tl' ceny Tn denote the observed
test times of n individuals put on test and let Ii’ i=1, ..., nbeloroO

according to whether the Ti was an observation on Xi or Yi‘ respectively.

......
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J R n . n
. Define F(t) = IX(T, > t)/n and Q,(t) = Lyx (T, <t, L, =1). o
fa] ! =1+ 70 PR

Then if 6 is known, a natural estimator of Se(t) is

-
. T S
: Sg(t) = [1+ (6-1) é (?(u)le 1 (8-1) if 8 > 1 S
2 (3.5) o
t da (u) - >
= exp( ~ J :72___.) if 8 =1 ® 4
0 F(u) :
' For § = 1, this gstimacar is of the form of the hazard rate estimator

proposed by Nelson (1972). The estimators (3.5) can be expressed in

the following form for computation purposes.

K \

Sq(r) = exp |- l ooie D if 8 =1
. T, <t,,I, . =1
R (L~1"7(1)
(3.6)
1 1
. (1 + 8-1a®? RTINS
. <t =1
Tt

o if 8 > 1
r7 where T(l)’ ey T(n) are the ordered death times.
s For 68 known and if the true underlying joint distribution of (X,Y)
T? is of the form (2.1) then ge(t) is a consistent estimator of S(t) as shown

by the following theorem.

Theorem 1. Let (X,Y) have the form (2.1) with marginals S(t), R(t)
;. respectively. Let 6 > 1 be known. Then on the set where S(t) > 0 we have . ?:;.
i ~ Lo

Se(c) + S(t) a.s.
'
-
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Proof:
For 6 = 1, the result follows by a theorem of Langberg, Proschan and
Quinzi (1981). Suppose that 6 > 1, Note that al(t) - Ql(t) a.s. and

E (u) » F(u) a.s. by the strong law of large numbers. Since Se(t) is a

t ~
dg, (w) S :
continuous function of ! =8 in the support of F(u), it suffices to show
0 (F(w]
r ~ b i ¢ -
dQl(u) dQl(u)
I — - 1 a.s

o Fw® o Fad

Now, after an integration by parts,

t .~ ~ t
dQ; (u) Q, (v) ;oA 1
A 0 = A e- Ql(u)d(:e )
0 [F(uw] (F(e)1™ 0 F"(u)
al(t) t 1 t 1
= Q) - QA% )+ QudEy )
[F(c)] 0 F~(u) 0 F (u)
~ t
Q,(t) - Q,(t) n
-l - G, )
[F (W] 0 F~ (u)
® do (v
+ ! = (3.7
0 F (v
By the dominated convergence theorem
t t
Lim , 94 [ Q) (w)
<o ~ F = o a.s.,
0 [F(u) [F(u)F
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Ql(c) = Ql(t)
[F (u))°

lim
n—»oo

= 0. a.s.,

and ~
lim sup {lQl(u) - Ql(u)l} = 0, a.s.

n+e

Hence, applying the above results to (3.7), the result now follows: //

To obtain bounds on the net survival function based on data from a
competing risks experiment, we proceed as follows. First, note that from
(3.5) it is true that §e(t) is a decreasing function of 8 for fixed t.

t . R
Also, as 6 -+ 1+ we have Se(c) t exp (- F l(u)dQl(u)).

0
which provides an upper bound. Notice that this upper bound corresponds
to an assumption of independence. As 8 - « one can show that §e(t) + E(t)
which corresponds to Peterson's (1976) lower bound.
In practice the'above bounds, with § = 1, =, while shorter than

Peterson's bounds, may still be quite wide,

Tighter bounds may be obtained by an investigator specifying
a range of possible values for 8. If the sample size is sufficiently

large and 6l <6< 62, then Sez(t) < s(e) < Sel(t). Specifying 91, 62

is equivalent to specifying a range of values T < T < Ty for the
coefficient of concordance T since 8 = (14+7)/(l ~T). Hence the primary
value of Se(t) is in putting bounds on S(t) rather than on estimation of

S(e).
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IV. EXAMPLE AND COMPARISONS

Vel

To illustrate the bounds obtained in the previous section, consider

the mortality data reported in Hoel (1972). The data was collected on a

group of RFM strain male mice who were subjected to a dose of 300 rads of
radiation at age 5-6 weeks. There were three competing risks, thymic
lymphoma, reticulutum cell sarcoma, and other causes of death. For
illustrative purposes we coansider reticulum cell sarcoma as the risk of
interest.

Table 1 reports the value of §e(t) for concordance T = (8 - 1)/(8 + 1).

The value of §e(t) at T = 0 corresponds to Nelson's (1972) hazard rate

TSN

estimator assuming independence. Peterson's upper and lower bound
g

(T = 1) are also reported as are Fisher and Kanerek's bounds and the Slud

and Rubenstein bounds for several values which reflect a positive
association between risks.

From Table 1 we first- note that Peterson's bounds are very wide. <
Substantial improvement is obtained if one assumes a non-negative
dependence structure between risks (See Table 2). Further tightening

of these bounds is achieved by assuming that T is in the range 0 to .5 .. ;if;

where the width of the boundaries is at most about 50% of that of Peterson's
bounds. e
Substantial improvement in the general bounds is also obtained by . sl
the bounds of Fisher and Kanerek or Slud and Rubenstein. The bounds of
Fisher and Kanerek assume a specifi: censoring pattern and require a
specification of a stretching corstant a. Without some additional informa-

tion, such specificariun may be impossible. Slud and Rubenstein's bounds

are for the general dependence structure. Their bounds require the

. R R T TP Tt et T vt et At . S . PR S IUA R N JE S SN - . ISR S Y '\ - - e
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specification of the p(t) function. This function is a quantity which )
is not easily concéptualized by investigators from either a statistical

or biological perspective. This makes it questionable whether reasoable

upper and lower bounds on p(t) can be extracted from one's prior beliefs. )
The major advantage of the bounds printed in this paper is that they

require only the specification of an upper and lower concordance, a

measure quite familiar to most investigators and easily explainable to '
nonstatisticians. N
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Table 2
. i; RELATIVE SIZE OF THE BOUNDS ON NET SURVIVAL
. FOR AN ASSUMED DEPENDENCE STRUCTURE

AS COMPARED TO PETERSON'S BOUNDS

Time 0<t<1 0<t<.5 0<t<.7
350 .9707 .0879 L2674 -
525 .9352 L2449 .5931 ? 
600 .7338 .5171 .6787
620 .6722 .5120 .6298 _
650 .5009 .4420 .4870 :
675 .3831 .3576 .3797 ’
700 .2883 .2767 .2833 e
750 .0600 .0600 .0600 T
g;;:
| I
’
b ]
N )
i
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Running Head: Estimators of survival with right-censoring

A COMPARISON OF SEVERAL METHODS OF ESTIMATING THE
SURVIVAL FUNCTION WHEN THERE IS EXTREME RIGHT CENSORING

M. L. Moeschberger John P. Klein

Dept. of Preventive Medicine Dept. of Statistics

The Ohio State University The Ohio State University
ABSTRACT

When there {s extremecensoring on the right, the Kaplan-Meier
product limit estimator is known to be a biased estimator of the
survival function. Several modifications of the Kaplan-Meier
estimator are examined and compared with respect to bias and mean
squared error.

Key words: Adjusted Kaplan-Meier survival estimation,
Bias of survival function, Life-~testing,

Survival analysis, Right censoring
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l. Introduction

In human and animal survival studies, as well as in
life-testing experiments in the physical sciences, one
method of estimating the underlying survival distribution
(or the reliability of a piece of equipment) which has
received widesprefd attention has been the Kaplan-Meier
product limit estimator (Kaplan and Meier, 1958).

For the situation in which the léngest time an individual
is in a study (or on test) is not a failure time, but rather
a censored observation, it is well known that there are many
complex problems associated with any statistical analysis
(Lagakos, 1979). 1In particular, the Kaplan-Meier product
limit estimator is biased on the low side (Gross and Clark,
1975). In the case of many censored observations larger
than the largest observed failure time this bias tends to be
worse. Estimated mean survival time and selected percentiles,
as well as other quantities dependent on knowledge of the
tail of the survival function, will also exhibit such biases.

A practical situation which motivates this study is a
large-scale animal experiment conducted at the National
Center for Toxicological Research (NCTR) where mice were fed
a particular dose of a carcinogen. The goals of this experiment
were to assess the effects of the carcinogen on survival and
on ége-specific tumor incidence. Towards this end, mice

were randomly divided into three groups and followed until

(LI

lat

l. "
.




2.
ii death or until a prespecified group censoring time (280, 420,

or 560 days) was reached at which time all those still alive
in a given group were sacrificed. Often there were many

surviving mice in all three groups at the group's sacrifice

-
time.
In general, we consider an experiment with n individuals
o under study and censoring is permitted. Let t(l)""' t(m)
denote the m ordered failure times of those m individuals
whose failure time is actually observed (t(l) < t(z) S cee £
i' t(m)). The remaining n-m individuals have been censored at

various points in time. It will be useful to introduce the
' notation Sj = number of survivors just prior to time t(j),
i.e., sj is the number of individuals still under observation
at the time t(j)' including the one that died at t(j)‘ The;
the Kaplan-Meier product limit estimator (assuming no ties

among the t(j)'s) of the underlying survival function,

P(t) = P(T>t),is
- 1 for t<t y)
P(t) =J 3 é .
N 221 (Sl -1)/Sl for t(j)f t<t(j+1) : N i
LI
0 for t:t(m+1) E;;_:l
) o
1 l 4
: )
. oy
AR
’ 3
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Ii for j=1,...,m, where t(m+1)=tc if the longest time an

individual is on study is a censoring time or t(m+1)= ® if

ﬁ? the longest time an individual is on study is a death.

i! This paper, first, proposes in Section 2 some methods of
"completing" the Kaplan-Meier estimator of the survival
function by i) replacing those censored observations that

:z are larger than the last observed failure time by theixr

expected order statistics, ii) usiné a Weibull distribution

to estimate the tail probability, P(t), tyt_, and iii)

employing a method suggested by Brown, Hollander and Korwar ;

(BHK) (1974). The second purpose is to demonstrate the

magnitude of the bias and mean squared error (MSE) of the

=. Kaplan-Meier estimator and to compare all methods of B (.

el

"completing" EZt), in the context of the aforementioned
o mouse study, utilizing simulated lifetimes from exponertial,
ii Weibull, lognormal, and bathtub-shaped hazard function
distributions. These results are presented in Section 3.

2. Completion of Kaplan-Meier Product-Limit Estimator

2.1 Expected Order Statistics

One method of attempting to "complete” 5(t),t>tc, would

be to "estimate” the failure times for those censored obser-

vations which are larger than the longest observed lifetime. : -

Let n, be the number of censored observations larger than : 5;3

o t A theorem regarding the conditional distributions of

i (m)
- order statistics states that for a random sample of size n

from a continuous parent, the conditional distribution of

.........
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given T s, U>n-n, is just the {

Ty’ tn-n;) = ®(n-n_)
distribution of the (u-n + nc)th order statistic in a sample
of size n, drawn from the parent distribution truncated on
the left at t = t(n-nc) (David 1981, p. 20).

For computational purposes, take tc as an estimate of
the (n-nc)th order statistic. Then find the expected value
of the n, order statistics from the parent distribution
truncated on the left at to- Since the Weibull distribution
with survival function P(t) = exp(-tk/e) has been widely
accepted as providing a reasonable fit for lifetime data,
it seems reasonable to employ the results of Weibull distri-
bution theory to complete P(t), t>t_. (It should be noted
that any distribution which is reasonable for the specific _
situation may be used.) The expected values of Weibull
order statistics up to sample size 40 for location parameter
= 1 and shape parameter = 0.5 (0.5)4(1)8 may be found in
Harter (1969). For larger sample sizes he states a re-
currence relation which may be used.

To compute expected values of the n. order statistics.in
question, values for k and ¢ must be chosen. One approach is
to use the maximum likelihood estimators, E and é,computed
by using all observations to estimate k and @. A second

approach, due to White (1969), uses least squares estimates

of k and 0 obtained by fitting the model

1n (t(j))=(1/k)1ne+(l/k)ln H(t(j)) (2) { Q T*?

"‘ o - (0 -
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to the t 's where H{(t ) is the estimated cumulative

(3) (3)
hazard rate at t(j) obtained from the Kaplan-Meier estimator.
Based on our Monte Carlo study we found the maximum likeli-
hood estimators performed better in all cases than did the
least squares estimators. Consequently, the method of least
squares will be dropped from future discussion in this paper.

The survival function for a Weibull random variable,

truncated on the left at tc’ is
Po(t) = exp (-(t¥ - t )/0} , t3t. (3)

So, by the theorem on order statistics stated at the be-
ginning of this section, the conditional distribution of

T(u)’ given T {u =n-n, +l,...,n) will be -

(n-n_) ~* (n-n)
approximated by the (u-n + nc)th order statistic in a sample

of n, drawn from (3). For simplicity, let j =u - n + n.,

so that j = 1,...,nc.

Now the expected value of the jth order statistic from (3) is
nc-l : i
E(T;,) = n 7 etpg ()} ITHE (8) e I (k"L 0)at
c X - )
j-1 tc
nc-l . ;
=n,, 12 ek ) VR iy Tl e I ey Y eray (a) -]
-1 3
1
where P (y) = exp(-yk/e),y=(tk—t§) l/kgo. ‘
and Tj-n is the jth order statistic in a sample of size n,. e ]
¢ -. f]
SRRy




Equation (4) can also be written as

n -1
(o]

. » k-1

+#5) 1 (2) 1B (2) 1963 k" az (5)
where P (2z) = exp (-zk) r 2= (Y/Gfl/k; 0.
Now E(Tj:nc) may be crudely estimated by

{0 { E (23p) 1o+ X3 1/k (6)
where E(Zj:nc) is the expected value ?f the jth order
statistic from a sample of size n, determined from Harter's
(1969) tables or recurrence relation and é and k are
maximum likelihood estimators of © and k respectively.

These n, estimated expected order statistics mﬁy then be
treated as "observed" lifetimes in adjusting (or "completing")
the estimated survival function computed in (1). The area
under the estimated survival function up to t. remains un-
changed. The area under the extended estimated survival
function based on the n, estimated expected order statistics
is then added to the initial area to get a more precise

estimate of P(t) (EOS extension).

2.2 Weibull Maximum Likelihood Techniques

A straightforward approach to completing P(t) is to set

-

B(t) = exp (-t%/0) for tot . (7)
Estimates of k and 0 based on all observations can be obtained

by either the maximum likelihood (WTAIL) or the least squares

[,
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method. However, our study found the completion using

maximum likelihood estimators was always better in terms of
bias and mean squared error.

One ostensible suggestion for improvement of this
estimator would be to "tie" the estimated tail to the
product-limit estimator at tc. Two methods were attempted
to accomplish this goal. Firét, the likelihood was maximized
with respect to k and @ subject to the constraint that
exp (-tck/e)=§Ztc).wThis method will be referred to as the
restricted MLE tail probability estimate (RWTAIL extension).
Second, a scale-shift was performed on the tail probability
in (7) so as to tie it to the product-limit estimator. This
method led to higher biases and mean squared errors of the -
survival function and will be dropped from further discussion
in this paper. ‘

2.3 BHK Type Methods.

The Brown-Hollander-Korwar completion of the product-limit
estimator sets

EZt) = exp (-t/e*) for t>tc (8)
where e* satisfies

ﬁléc) = exp (-tc/e*).

In the BHK spirit we tried to complete P(t) by a Weibull
* *
function which used estimates of k and 0,k and o , that
satisfied the following two relations R

- " _ k* A *
P (t(m)) = exp(-t(m)/e ) |

- --‘.-
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and v

Po(tip_1)) = exp (=t _;,/0%).

The latter method also led to. consistently poor performance

and the results will not be presented. DH

3. A Comparison of the Various Methods

A simulation study of data like that collected at NCTR
was performed. Three groups of 48 lifetimes were simulated ) ~‘
with all testing stopping at 280, 420, and 560 days for the |
three groups, respectively. Distributions with mean survival
times of 400, 500, and 600 days were used. The generated

lifetimes greater than or equal to the sacrifice time for

that particular group were considered as censored. The ﬁ};f%
remaining set of observed lifetimes, along with the number
censored at the three sacrifice times constituted a single

sample. For each of the distributions studied, 1000 such

samples were generated. Weibull distributions with shape
parameters .5, decreasing failure rate , 1, constant failure
rate, and 4, increasing failure rate, were used. Lognormal Afiq

distributions, failure rate changes from increasing to

LI

decreasing, with first two moments comparable to the above ggf;

Weibull distributions with k=1 and k=4 were also used.

Finally, a bathtub hazard model, of Glaser (1980), failure

rate changes from decreasing to increasing, was used. This
distribution is a mixture of an exponential of parameter A

with probability 1-p and a gamma with parameter ) and index

----------

...............................
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of 3 with probability p. Mixing parameters of p=.l1 and p=.4
were used.

The bias and MSE for the estimation of the tail probabil-
ities,i.e., the completed portion of the product-limit
estimator, were calculated for each hypothesized distribution
and for each competing method of completion. Sinée these
results were extremely similar to those foupd in estimating
mean survival time, ;=I:§Zt) dt, we only show the bias and
MSE of each competing estimator of y in Table 1. This also
allows us to demonstrate the magnitude of the bias and MSE
of the product-limit estimatof of u. The bias and MSE for
estimating the 90th percentile are also presented for the
various estimation methods in Table 2. As one would expect,
the Kaplan-Meier (K-M) estimator performs considerably more
poorly than the other estimation schemes. The BHK extension
does very well if the underlying distribution is exponential
or lognormal with first two moments compatible with the
exponential. BHK does reasonably well for the bathtub shaped
hazard model but it performs very poorly for the Weibull with
increasing failure rate and for the lognormal with first two
moments compatible with the Weibull.

The remaining three extensions (EOS, WTAIL, and RWTAIL)
appear to be somewhat comparable. Each of them are best under
certain circumstances although many times the biases and MSE's

are so close to one another that they are essentially equiva-
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- lent. Only the EOS extension has the desirable property of

g 10. o
3 never being worst. It usually is competitive with the method A

that is best.

Ordering the extensions from the standpoint of simplicity,
simplest to most complex, we have BHK, WTAIL, RWTAIL, and EOS..
. In summary, the Kaplan-Meier estimator should probably be ;ﬁ:f
extended in the presence of extreme right censoring. One's
choice 6f extension depends upon one's knowledge of the
distribution of lifetimes under consideration and the extent
of computer facilities available. If the data follow an ex-
ponential type distribution or if no computer facilities are
.: present the BHK method is the extension of éhoice due to its
simplicity. If the data exhibit a non-constant failure rate

and computer facilities are available then the RWTAIL or EOS

extensions seem to be advisable to use.
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TABLE 1 _
Bias/100(and HSEI(IOO)Z) for Estimating Mean Survival Time A
X for Various Methods of Completion . . ,?'-;
, Rastricted — R
Mean % Eetinated Weibull  Weibull »
censored BHK Order Statistic WTail RWTAIL 4
Disgributions u ac 360 days K-M [Extension _  Extension ___ Extension Extension L
Wetbull 400 18,7  -2.000" -1.462 -a0? .131 .206 P
C (6.036)Y (2.271) (1.172) 1.160)°  (1.543) :
ke. S s00 223 -2.802" -2.078 -.176° .208 .299 R
(7.886)" (4.498) (1.922)° (2.344) (3.292) ' »
600 25.5  -3.625" -2.704 -.187° .344 479
L a3 g.522) (3.025)° (4.275) (6.031)
400 - 24.6 -.991%  -.047 ~.046 .016° .0379
: a.on¥ (.215° (.257) (.275) (.343)
k=1 500  32.6  -1.632% -.049 -.047° 073 116 b
S 2698 (.416)° (.535) (.508) (.70%) . ]
600  39.3  -2.359"  .022° .034 .140 . .214 L)
(5.592)" (.596)° (.987) (1.023) (1.353) T
400 (1.5 -.036  .136" -.005 .003° .004 : L
.012)® (.053)" (.013) (.014) (.014) o
ke 500  34.6 -3 1.507" -.020 .014° .019 »
(-109) (2.830)" (.036)° (.041) (.048) ]
600  59.9 -.903  s.982" 144 .028° .039 L
(.822) (41.430)" (4.168) (.147)° .157) R
lognormal 400  20.6 -.g68¥ -.178° -.544 -.586 - ~.412 _ R
r——r———
¥ s’ (.363) (.403) (.267) [y
(k=1) s00 290  -1.420¥ -.1s0° -.865 -.918 ~.696 . o
(2.060)" (.323)° (.855) (.938) (.644) L
600 36.9  -2.079" -.022 -1.234 -1.281 -1.038
(4.365)* (.s71)° (1.679) " (1.800) (1.301)
400 8.6 -.070 129" -.047 -.053 -.027°
(.016)° (.056)" (.014)° .os® (.014)®
(k=) 500 29.1 -.330  1.033" -.170 .181 -.135%
(.118) (1.459)" (.051) (.055) (.043)°
600  54.5 -.853  4.430% -.391 -.392 -.356°
(.738) (23.159)" (.199) (.199)® (amn®
Bathtub 400 18.6  -1.069  -.185 -.170 1.125" .063°
. (1.175)  (.236)° (.260) (.745)" (.361)
pa.1 500 26.1  -1.722% -.259 -.202 1.523 .046° RO
(2.996)  (.427)P (.560) (3.230) (.608) R
600  32.6  ~-2.452" -.362 -.310 1.761 047" Tl
6.063)* (.721)° (.982) (4.490) (1.254) ) {
400 8.1  -1.786" -1.543 -1.547 -.936 3430
(3.218)" (2.463) (2.476) (1.081) (.5464)°
pe.b 500  13.3  -2.370Y -1.826 -1.814 -.825 .ses®
(5.649)" (3.472) (3.446) a.03n®  (1.30%
600 18.7  -3.072 -2.191 -2.175 -.878 .aa1® , '
(9.466)" (5.013) (4.983) (1.285)°  (2.792) P .

b
Best estimation method
"Hors: estimation method

. .o - . . .
- . et - PR et P T IS .t R T
. L AT I A i R T L S R A S S T Rt .
S A T A TNV TL UL I LI UL SR ST AT A NN IR A SRR [N oo
LT DI SR IR S T S S T Tt T G Wit SRt By o .‘_.‘An:‘.‘_;;. PRSI TR ST BRI ThlV Tl YT T Tty




v - v
P
L
<
4
1
4
1
4

| ,4
E
Lr

TABLE 2

Bias/100 (and MSE/(100)2) for Estimating.90th Percentile
for Various Methods of Completion

Worst estimation method .

Pastricted
Statistic WTAIL FWTAIL
Distributions u  K-M gt_u_\s_im mmmim Extension Extension
Weibull 400 -5.017% -2.858 1.691 .234° .458
(25.185)¥  (9.358) (16.424) (7.526)® (10.812)
k=.5 500 -7.655Y -4.620 1.897 .a18° .642
) (58.604)Y (22.711) (24.276) (14.319)° (21.442)
600 -10.306"  -6.390 2.213 .734° 1.064
(106.21)¥  (42.449) (36.895) (25.419)® (37.911)
400 -3.610" .064° .248 .084 .067
(13.035)% (1.892)P (2.323) (1.980)  (2.945)
E k=1 500 -5.913% .096® .289 .121 .306
(34.963)%  (2.995)® (4.681) (4.361)  (5.903)
F: 600 -8.216" .244° .610 .18 .550
. (67.459)% (4.198)° (9.247)  (8.331)  (10.792)
- 400 -.045 .098¥  -.007°  -.037 -.011
. (.038)®  (.236)  (.060)  (.047) (.063)
3 K=4 500 -1.195 5.324%  -.031 -.026 .024°
' (1.429) (33.001)%  (.146)  (.4®  (177)
600 -2.554  17.913% .120 .090 .068®
(6.524) (355.02)% (.794)  (.676) (.641)P
lognormal 400 -2.628¥  -.044® -1.263  -1.758 -.967
(6.908)Y  (1.526)® (1.979)  (3.407)  (1.673)
' (k=1) 500 -4.680" .213P 2,354 -2.718 -1.908
(21.902)% (2.708)® (6.153) (7.%09)  (4.751) .
600 -6.736% .759®  -3.507  -3.766 -2.980 '
(45.371)%  (4.764)° (13.123) (14.981)  (10.257)
400 -,085 .161 -.038 -.162" -.024°
(.060)® (.409)¥ (.081)  (.065) (.093)
(k=4) 500 ~1.251 3.722¥  -.s84  -.657 -.484°
(1.566) (17.658)"  (.403) (.495) (.318)°
600 -2.621  13.695% -1.214  ~-1.236 -1.158P
" (6.872) (210.300%  (1.616) (1.662)  (1.498)° PR
3 Bathtub 400 -3.629¥  -.177 053 -.104 .105 IR
(13.161% (1.717)° (2.052) (2.058)  (3.190)
p=-1 500 -6.068Y  -.457 -.071  -.208 .004° -
» (36.826)¥  (2.955)° (4.702)  (3.619)  (5.245) o
. 600 -7.997Y  -.318 .043 -.244 -.014° R
= (63.954)Y  (4.330)° (7.786)  (7.608)  (9.923) RS
g 400  -.347 .143° .276 1.154% .981 o T
(.279)%  (.844) (1.078) (3.817) (4. 741" -
4 p=.4 500 -1.425 521 .764 1.699 1.718" R
o (2.035)  (1.540)® (2.067)  (8.574) (10.714)" T
- 600 -3.554¥  -.137 1322 2,304 2.450 NS
- (12.626)% (1.30)P (2.352) (17.530) (22.456) RRNAN
Eest estimation method - 4
w SR
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ABSTRACT

The problem of estimating reliability for the bivariate
exponential distributions of Block and Basu (1974) and Marshall
and Olkin (1967) is considered. For Bock and Basu's model a
minimum variance unbiased estimator of the joint survival
function is obtained in the case of identically distributed
marginals. For the non-identically distributed case the
performance of the maximum likelihood estimator and the
jackknifed maximum likelihood estimator is studied. For
Marshall and Olkin's model the performance of several different
parameter estimators and bias reduction techniques for estima-

ting joint reliability are considered.

KEY WORDS: Minimum Variance Unbiased Estimators; Bivariate
Exponential; Reliability; Maximum Likelihood Estimator;

Jackknife; Survival Function.
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1.  INTRODUCTION A

Let X, Y have either the bivariate exponential distribution
(BVE) of Marshall and Olkin (1967) or the absolutely continuous
bivariate exponential distribution (ACBVE) of Block and Basu
(1974). These two distributions have found considerable use as
models for both physical and biological systems. The problem
of interest is to estimate the joint reliability function, -
;(x,y) = P(X>x, Y>y), for each of these two distributions. A ’
natural estimator of E(x,y) is obtained by substituting in the
appropriate expression for ?(x,y) good estimators of the model —
parameters. Often, as seen in Pugh (1963), Basu (1964) or Basu

and El Mawaziny (1978), such estimators can be considerably

biased. We wish to obtain reduced biased estimators of f(x,y)
for both the BVE and ACBVE distributions.

In Section 2 this estimation problem is considered for the
ACBVE. In the case of identically distributed marginals, using
the Roa-Blackwell and the Lehmann-Scheffé theorems we obtain
minimum variance unbiased estimators (UMVUE) of E(x,y). In _';;
the case of non-identically distributed marginals this approach j’;T
fails since there are no complete sufficient statistics. Here

we investigate the performance of the maximum likelihood

- P U R . T T T S - B
T L o e fe te el e L I AR LA S AP D A AT G S T T
. IR I P I P e . ¢ R R I TP P e P I PP R

. R R e R PRI
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estimator as well as the jacknifed maximum likelihood estimator.
In Section 3 we consider the estimation of E(x,y) for the
BVE. Again there are no complete sufficient statistics so no
minimum variance unbiased estimators can be obtained. Several
different methods for estimating parameters are considered. For

each estimation procedure we consider several bias reduction

techniques.

2. ABSOLUTELY CONTINUOUS BIVARIATE EXPONENTIAL

2.1 Introduction

Let (X, Y) have the absolutely continuous bivariate
exponential distribution of Block and Basu (1974) with parameters
Al’ Xz >0, AIZ > 0 ((X, Y) v ACBVE (Al, Xz, Xlz)). This
distribution is closely related to the bivariate exponential of
Freund (1961). It has been used by Gross, Clark and Lui (1971)
and Gross (1973) to model the lifetimes of two organ systems
and by Gross and Lam (1981) for modeling paired survival time
data such as survival of a tumor remission when a patient
receives two types of treatment.

For this model the joint reliability function is

o e e e . . .
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F(x,y) = o) exp(-llx-AZy-llz max(x,y))

- _X_%§_T exp(-A max(x,y)), for x, y > 0,

( 172

with A= xl + Az + AlZ’ (2.1.1)

This distribution has the bivariate loss of memory property
(LMP) defined by Block and Basu (1974). It is the absolutely
continuous part of the Marshall and Olkin (1967) bivariate
exponential.

We shall consider two cases for estimating F(x,y), one

where the marginals are identically distributed and the general

model.

2.2 Equal Marginals
Consider the model (2.1.1) with Xl = XZ = o and A12 = B.

Let (xl, yl), (xn, yn) be a random sample from (2.1.1).

Let U, = Xmax(xi, yi) and U, = i(xi + y;). Mehrotra and
Michalek (1976) show that (Ul’ UZ) is a complete sufficient

statistic for (a,B8). The MLE of a,8 are given by

~ ~ 2 1
e R [ el AL
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271 1772 172 "2
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These estimators are biased by a factor of n/(n-1) so the

-1 ~ v -1 n
estimators d = &[% and B = n—n—l- B are the UMVUEof 7 and 8.
:.- Two natural estimators of f(x,y) are obtained by sustituting
X ~ -~ ny
E: either (o, B) or (a, %) in (2.1.1).
We now use the method prevosed by Basu (1964) to obtain the
UMVUE of F(x,y).

t,-(.:
L Define .

dlx,y: X,¥) = {1 if X>x,Y >y

——

0 otherwise (2.2.2)

Clearly ¢(x,y: X,Y) is an unbiased estimator of E(x,y) based on

a random sample of size one from a ACBVE (a,x,8). By the Rao-
N

Blackwell and Lehmanr~Scheffé theorems the estimator E(x,y) =
E(¢(x,y;x,Y)|u1,u2) is the UMVUE of F(x,y).

To simplify the calculations let T = UZ-Ul and V = 2U1—U2,
that is T = ¢ min(xi’Yi) and V =zmax(xi,Yi) -7 min(xi,\i),

From Mehrotra and Michalek (1976), the joing density of (T,V) is

a a
f(C,V) = (20+8) ((1+B) cn-lvn_lexp(-(Za*'B)t-(Oz"‘B)V). t,v>0
((a-1)1)?

0 otherwise. (2.2.3)

Now split the sample of size n into two independent sub-

samples of sizes one and n-1l, respectively. Let (Zl, 22) denote

" the sample of size one and let Tl’ vl denote the statistics T

- ot e DRSS P S L S -
L A, i o8 e Tamt Y T T e "a _*a CR L R T
S i S N R P A T P AT PP A R R T U
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The joint

and V defined on the remaining n-1 observations.

density of (2, ZZ’ Tl’ Vl) is

r : n

(2048)"(a+B)"  n-2_ n
SRS

A _zexp[—(2a+8)t1—(a+8)vl-
2{(n-2)"!] :

£(z),25.ty,vy)=

<

azl-(u+8)zzl if zy zy

2o+8) (o))" n-2_ n
t Vl

-2
1 exp[—(2a+6)t1-(a+6)vl_

k\ZI(n—Z)!]Z

(otB)z -0z,] if 2z, < z) (2.2.4)

> 0.

for ¢t 1

1V

Clearly V = Vl + max(Zl, 22) - min(Zl, 22) and T = T; +

min(Z;, Z,). Hence the joint density of (Z;, Z,, T, V) is

f(zl,zz,t,v) =
n n
(20.+B) (Q+B) (t_zl)n-z (V—22+zl)n_zexp(-(2a+8) t_(a+8)v) for
2[(n-1)1]2
0 <v, t; 0< 2, < L3 zy <z, < v + z;

52a+g)“ga+g)“

2[(n-1)1}2 (t_zz)n-z(v'21+zz)eXP(-2a+B)c-(a+e)v)

0 < v,t;

0 < z, <t 12y < zy <v+ zy

Thus the conditional distribption of Zl’ Z2 given
(-1 (t-2) " ¥ (vozpr2 )
£(z),2,|T=t, V=v)= n-1 -1 0 <
t v
z) <
(=17 (t=2)" "2 (v-z +z,) "2 ..
2 tn-1 vn-l
22<

. . b .‘\.. K -.

.........

(2.2

is

v+ 2z

5)
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To find E(¢d(x,y; Zl’ZZ)IT = t, V= v) consider three
cases.

Case 1: t > x =y > 0. Here, R

E(¢(x,y;zl.zz)IT=c, V=v)

(n-l)z(t—zl)n_z(v-zf-zl)n-2 s ;}*
n-1 vn—l ddezl

2t

(2.2.7) 1

il
~
—
~
=4
P

Case 2: x < y < t. Here, «-. 4

E(¢(X,Y;ZI,ZZ)IT=C, V=vy) = f / f(zl,zz|c,v)dz1dz2 +
{(zl,zz):zl>y,zz>y}

+ [ [Ez), zyle,v)dzydz, = (1 - D+ =

{(zy,25): x<z;<y, y<z3}

]}ﬂhzl (ﬂ"l)z(t-zl)n_z (V+Zl"22)n-2 ¥ n~1 .:
+ Xy ST el dz,dz; = (1 t) + NS
1k R
[(t-x)n+k-l-(t—y)n+k—1]

@n 5k S o

—n=2)_ T (-1 .
vn-ltn-l k=0 (n+k-1)

(2.2.8) el

;; B
Case 3: t > x>y~ 0. -9
oo
By symmetry E(d(x,y; 21,22)|T=t, V=v) = (l-:)n_l + o ]

-1 SR

-1 n-1 _ }k; 1. - _ -
z—v_'sr'l—lc')‘_'l_ k=0 ((;+k-1l)‘ e R (G LA (SR n =
(2.2.9) PR
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:g f: 2.3 Unequal Marginals

p‘ ) When.(X,Y) is ACBVE (Al’AZ’ 12) with A not known to be equal to

- ?! AZ’ there does not exist a set of complete, sufficient statistics for

- (Al’ 20 12). Hence, the technique described in section 2.2 fails. y ;;

Maximum likelihood estimators of (A 12) are obtained numerically by

1’ 2
maximizing the likelihood equation as described in Block and Basu (1974). . ;
The maximum likelihood estimator, F(x,y) of f(x,y) is obtained by :ﬂ o
substituting these estimators into (2.1.1).

For small sample sizes, this estimator may be highly biased. To .

reduce this bias we consider the jackknifed version of the MLE estimator.

AP AU WY S SN T P A

This estimator is constructed as follows: Let fgizl)(x,y) be the MLE of

Fkx,y) based on the subsample of size n~1 obtained by deleting the jth -~
observation from the original sample. The jackknifed version of %(x,y) is EE;E;
. 2
Fiack®:6) = n Fex,y) - {2L Jrz‘ FO) L oon. @) N

-~ -4

Miller (1974) shows that this estimator removes the n-lth order term in ;&32}
the expansion of the bias of F(x,y). Wilg
To study the performance of the MLE and the jackknifed MLE of ;-.~:
F(x,y), a simulation study was performed. For various values of A A 12 Eiéif
and n, 500 AéBVE samples were generated by the method of Friday and .k:‘
Patil (1977). Values of (x,v) were picked so that F(x,y) = ,9. The ;71“:
study showed that the jackknifed maximum likelihood estimator had
D

significantlv smaller bias than the MLE, For sample sizes of 10 or ngéi
larger, the bias of this estimator is not statisticallv different from e

zero. However, the jackknifed MLE has a slightly larger mean squared

error than the MLE in all cases considered.
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3. BIVARIATE EXPONENTIAL ,g o
3.1 Parameter Estimation R
We say (X,Y) follows the bivariate exponential distribution of - :?f
PR

Marshall and Olkin (1967) with parameters Xl >0, X, >0, and -
ALZ > 0((X,Y) is BVE (Xl, AZ’ Alz)) if the joint survival function is .‘
4
P(X > x, Y > y) = F(x,y) = exp(—klx—kzy-klz max(x,y)) (3.1.1) - -~ A
for x >y > 0. This distribution is not absolutely continuous since .1"7'1
P(X = y) = A, /(A + XZ + AlZ)' The marginals are exponential as is 5

min(X,Y). This is the only bivariate distribution with exponential

marginals and the loss of memory property (LMP) as defined in Block and

Basu (1974).

To estimate kl' AZ' AlZ

be the number of observations with Xi less, greater, and

based on a random sample (Xl, Yl), e

let n

1* M0 ®

12

equal to Yo, respectively. Let T = Zmax(Xi, Yi)' Sx = in. S = ZYi.

y

Bhattacharyya and Johnson (1971) show that (nl, Ny tz, Sy sy) are

jointly minimal sufficient but not complete, Hence, the approach of

section 2.1 cannot be applied. The maximum likelihood estimators are
obtained by numerically maximizing the likelihood equations. Bhattacharyya
and Johnson (1971) obtain conditions under which the MLE exist, and show

that these estimators are asymptotically trivariate normal with mean e

Bemis, Bain, and Higgins (1972) have obtained method of moments

estimators of the paramcters. Proschan and Sullo (1976) obtained

estimators of the paramcters by using a first iterate in the likelihood N

i . : o
equations., Arnold (1968) gives estimators of Xi based on Nys Ny 0y, and =Jﬁ
e

!

. -
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U=2E% min (Xi, Yi)' In the competing risks framework where only the
minimum of X and Y is observed, these estimators are the unique minimum
variance unbiased estimators of Xi. All of the above estimators are

asymptotically trivariate normal with mean (Al, AZ’ Alz).

3.2 Estimation of Tail Probability
The problem of interest is to estimate F(x,y) given by (3.1l.1).
A natural method of estimating (3.1.1) is to use one of the above methods
to estimate (Al, AZ’ Alz) and substitute these estimates in (3.1.1).
Several methods may be uwed to reduce the bias of these estimators,
The first approach is to expand the substitution estimator in a Taylor
series about (Al, Xz, Xlz) keeping only second order terms. When

E(Xi) = Ai’ the bias of the substitution estimator is approximately equal to

E(Fgyp (%,¥)) Y Fx,y) [1 + 0%/2] where

2

g = (x,y, max(x,y))I(x,y, max(x,y))’ (3.2.1)

-~ -~

and L is the appropriate covariance matrix of (Xl, XZ’ \12). This

suggests a reduced bias estimator of F(x,y) given by

-~ -~ ~

Frg(oy) = Fgugxuy) /(1 +0°/2) (3.2,2)

~

where 02 is an estimator of a?.
A second approach to the bias of ?SUB(x,y) is through

asymptotic theory. Note that ln ?SUB(x,y) is asymptotically

2
normal with mean - x -Azy -A12 max(x,y) and variance 0°. Thus,
for large n, ?suB(x,y) has a log normal distribution and
..."-_.:."-_.-.-_\‘.-.'.-..’-."-.'..*."_-',:_-_-_:‘-..\:.. .- T A AT T e .\':\_.:._... .
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12
E(?SUB(X,Y)) + F(x,y) exp(02/2) (3.2.3) . . Z
. . . < :}}i
and V(FSUB(x,y)) + F(x,y)) e’ (% -1). This suggests a reduced " ﬁ}:ﬁ
- ) 1

bias estimator of F(x,y) given by

~

F g(y) = Foo(x,y)exp(0°/2). (3.2.4)

A third method to reduce the bi?f of fSUB(x,y) is the jackknife
as described in Section 2.3.

To compare these estimators, a simulation study was performed.
500 BVE observations were generated for various combinations of

.9.

L}

n, Xl, XZ’ A12' Values of (x,y) were selected so that F(x,y)
Several conclusions can be drawn from the study. First, for all
bias reduction techniques, those based on Arnold's estimators have a
significantly larger mean squared error but a smaller relative bias.
Secondly, there appears to be very little difference in the estimators
based on the other three methods. For Arnold's estimators, all three

bias reduction techniques yield approximately unbiased estimators with

comparable mean squared errors. For the other methods, oniy the

jackknifed estimator is approximately unbiased due to bias of the

- - —~4

parameters themselves. Our recommendation is to jackknife either the ’
Proschan and Sullo estimator or the method of moments estimator N .j;J

since these are computationally easier than the MLE. -
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